Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Processing of thermally stable 3D hierarchical ZIF-8@ZnO structures and their CO2 adsorption studies

    246690.pdf (1.245Mb)
    Access Status
    Open access
    Authors
    Thomas, M.
    Nair, Balagopal
    Anilkumar, G.
    Mohamed, A.
    Warrier, K.
    Hareesh, U.
    Date
    2016
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Thomas, M. and Nair, B. and Anilkumar, G. and Mohamed, A. and Warrier, K. and Hareesh, U. 2016. Processing of thermally stable 3D hierarchical ZIF-8@ZnO structures and their CO2 adsorption studies. Journal of Environmental Chemical Engineering. 4 (2): pp. 1442-1450.
    Source Title
    Journal of Environmental Chemical Engineering
    DOI
    10.1016/j.jece.2016.01.043
    School
    Nanochemistry Research Institute
    URI
    http://hdl.handle.net/20.500.11937/18541
    Collection
    • Curtin Research Publications
    Abstract

    Core-shell hybrid structures of ZnO-Zeolitic Imidazolate Framework-8 (ZIF@ZnO) were obtained by the solvothermal treatment of ZnO hierarchical structures having an average cluster size of ~3 µm and surface area of ~19 m2/g. The surface area and pore volume of these supported structures could be tailored as a function of reaction time and temperature. Solvothermal treatment of ZnO structures in the presence of imidazole at 95 °C for 24 h induced extremely large surface area of 733 m2/g for the ZIF@ZnO samples. Samples thus obtained demonstrated a CO2 adsorption capacity of 0.34 mmol/g at 25 °C compared to the value of 0.052 mmol/g measured for the ZnO structures. More significantly, the ZnO core helped the ZIF-8 surface fractal assemblies to significantly improve the thermal stability and retain their near spherical shapes allowing better handling in any practical adsorption application. The results validate that surface conversion of ZnO microstructures to ZIF-8 could be an efficient pathway towards the development of ZIF based supported adsorbents for CO2 separation. © 2016 Elsevier Ltd. All rights reserved.

    Related items

    Showing items related by title, author, creator and subject.

    • Determination of the structure of y-alumina using empirical and first principle calculations combined with supporting experiments
      Paglia, Gianluca (2004)
      Aluminas have had some form of chemical and industrial use throughout history. For little over a century corundum (α-Al2O3) has been the most widely used and known of the aluminas. The emerging metastable aluminas, including ...
    • Particle image velocimetry and infrared thermography of turbulent jet impingement on an oscillating surface
      Chaugule, V.; Narayanaswamy, Ramesh; Lucey, Anthony; Narayanan, V.; Jewkes, J. (2018)
      Jet impingement is widely used for forced-convection heat transfer applications and knowledge about its flow structure and heat transfer rate on a static surface are well established. However, the characteristics of jet ...
    • Characterisation of aquatic natural organic matter by micro-scale sealed vessel pyrolysis
      Berwick, Lyndon (2009)
      The analytical capacity of MSSV pyrolysis has been used to extend the structural characterisation of aquatic natural organic matter (NOM). NOM can contribute to various potable water issues and is present in high ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.