Curtin University Homepage
  • Library
  • Help
    • Log in

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    One-pot synthesis of N-doped graphene for metal-free advanced oxidation processes

    Access Status
    Fulltext not available
    Authors
    Wang, C.
    Kang, J.
    Sun, Hongqi
    Ang, Ming
    Tadé, Moses
    Wang, Shaobin
    Date
    2016
    Type
    Journal Article
    
    Metadata
    Show full item record
    Abstract

    Recently, graphene and its derivatives as novel metal-free materials have attracted considerable attention in environmental remediation technologies. One of the barriers to practical applications is the mass production of high quality graphene-based catalysts. In this study, high-quality nitrogen-doped graphene (NG) nanomaterials were synthesized by controlled pyrolysis of a mixture of glucose, ferric chloride and urea. Glucose serves as a carbon precursor, urea as a nitrogen precursor, and hexahydrate ferric chloride as both a template and a catalyst. It was found that a low oxygen level of 2-4 at% and a nitrogen doping level of 0.5-1.8 at% were achieved at a moderate temperature. The obtained nitrogen-doped graphene was employed as a metal-free catalyst for efficient phenol degradation by peroxymonosulfate (PMS) activation. Kinetic studies showed that the phenol degradation facilitated by NG catalysis followed first-order reaction kinetics. Electron paramagnetic resonance (EPR) was performed to detect radical generation in order to reveal the mechanism of PMS activation processes and phenol degradation pathways on nanocarbons. It was found that both •OH and SO4 •- were produced in the catalytic oxidation processes and played significant roles in phenol oxidation.

    Citation
    Wang, C. and Kang, J. and Sun, H. and Ang, H. and Tadé, M. and Wang, S. 2016. One-pot synthesis of N-doped graphene for metal-free advanced oxidation processes. Carbon. 102: pp. 279-287.
    Source Title
    Carbon
    DOI
    10.1016/j.carbon.2016.02.048
    ISSN
    0008-6223
    School
    School of Chemical and Petroleum Engineering
    URI
    http://hdl.handle.net/20.500.11937/18603
    Collection
    • Curtin Research Publications

    Related items

    Showing items related by title, author, creator and subject.

    • Facile synthesis of nitrogen-doped graphene via low-temperature pyrolysis: The effects of precursors and annealing ambience on metal-free catalytic oxidation
      Li, D.; Duan, Xianguang; Sun, Hongqi; Kang, J.; Zhang, H.; Tade, Moses; Wang, S. (2017)
      A green and facile protocol of thermal treatment of graphene oxide (GO) with urea was adopted to synthesize nitrogen-doped graphene (NG-Urea-air) at a low temperature (350 °C) in the static air. The resulting sample ...
    • Sulfur and nitrogen co-doped graphene for metal-free catalytic oxidation reactions
      Duan, X.; O'Donnell, Kane; Sun, Hongqi; Wang, Yuxian; Wang, Shaobin (2015)
      Sulfur and nitrogen co-doped reduced graphene oxide (rGO) is synthesized bya facile method and demonstrated remarkably enhanced activities in metal-free activation of peroxymonosulfate (PMS) for catalytic oxidation of ...
    • Sulfur and Nitrogen Co-Doped Graphene for Metal-Free Catalytic Oxidation Reactions
      Duan, X.; O'Donnell, Kane; Sun, Hongqi; Wang, Y.; Wang, Shaobin (2015)
      Sulfur and nitrogen co-doped reduced graphene oxide (rGO) is synthesized by a facile method and demonstrated remarkably enhanced activities in metal-free activation of peroxymonosulfate (PMS) for catalytic oxidation of ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorsTitlesSubjectsDocument TypesThis CollectionIssue DateAuthorsTitlesSubjectsDocument Types

    My Account

    Log in

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Connect with Curtin

    • 
    • 
    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158