Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Late Archean to Early Paleoproterozoic global tectonics, environmental change and the rise of atmospheric oxygen

    Access Status
    Fulltext not available
    Authors
    Barley, M.
    Bekker, A.
    Krapez, Bryan
    Date
    2005
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Barley, M. and Bekker, A. and Krapez, B. 2005. Late Archean to Early Paleoproterozoic global tectonics, environmental change and the rise of atmospheric oxygen. Earth and Planetary Science Letters. 238 (1-2): pp. 156-171.
    Source Title
    Earth and Planetary Science Letters
    DOI
    10.1016/j.epsl.2005.06.062
    ISSN
    0012821X
    URI
    http://hdl.handle.net/20.500.11937/18839
    Collection
    • Curtin Research Publications
    Abstract

    Analysis of the tectonostratigraphic records of Late Archean to Early Paleoproterozoic terranes indicates linkage between global tectonics, changing sea levels and environmental conditions. A Late Archean tectonic cycle started at ~2.78 Ga involving the breakup of a pre-existing continent (Vaalbara) and the most prodigious period of generation and preservation of juvenile continental crust recorded in Earth history during a period of plume breakout (~2.72 to 2.65 Ga) accompanied by high sea levels. During this period, cratons formed by accretion of granitoid–greenstone terranes at convergent margins started to aggregate into larger continents (e.g. Kenorland). Lower sea levels between ~2.65 and 2.55 Ga were followed by a second (~2.51 to 2.45 Ga) period of plume breakout resulting in a global peak in magmatism, high sea levels and deposition of banded iron formations (BIF) on the trailing margins of the Pilbara and Kaapvaal cratons. Cratons in South Australia, Antarctica, India, and China record convergent margin magmatism, orogeny and high-grade metamorphism between 2.56 and 2.42 Ga. Continued aggregation of continental fragments (e.g. amalgamation of Indian cratons) may have formed the Earth’s first supercontinent by ~2.4 Ga with a return to low sea levels and relative tectonic quiescence before the supercontinent started to breakup from ~2.32 Ga. Although oxygenic photosynthesis had evolved by 2.71 Ga, the irreversible rise of atmospheric O2 to N105 PAL appears to have occurred between 2.47 and 2.40 Ga following the second plume breakout and coinciding with a decline in BIF deposition and the maximum extent of the supercontinent suggesting dynamic linkage between tectonics and both the sources and sinks of oxygen. Periods of plume breakout (2.72 to 2.65 Ga and 2.51 to 2.45 Ga) would have limited ocean productivity and the rate of photosynthesis and also enhanced the reduced conditions typical of the Archean biosphere, as well as the greenhouse gas contents of the atmosphere necessary to maintain temperate conditions. This suggests that either an increase in the oxidation state of volcanic gasses during the second plume breakout, or a decreased flux of reduced gasses following plume breakout, coupled with the filling of crustal oxygen sinks and possibly also an increase in ocean productivity and the rate of photosynthesis resulted in the global flux of reduced gasses falling below oxygen production leading to a rise of atmospheric O2 accompanied by loss of the CH4-rich greenhouse atmosphere resulting in the Earth’s first widespread glaciation. Detrital pyrite and uraninite in 2.45 to 2.40 Ga sediments suggests that terrestrial surface environments were not yet extensively oxidized. The oldest evidence of extensive oxidative weathering is associated with 2.32 to 2.22 Ga glacial deposits and breakup of the supercontinent.

    Related items

    Showing items related by title, author, creator and subject.

    • A dynamic 2000–540 Ma Earth history: From cratonic amalgamation to the age of supercontinent cycle
      Li, Zheng-Xiang ; Liu, Yebo; Ernst, Richard (2023)
      Establishing how tectonic plates have moved since deep time is essential for understanding how Earth's geodynamic system has evolved and operates, thus answering longstanding questions such as what “drives” plate tectonics. ...
    • Is the rate of supercontinent assembly changing with time?
      Condie, K.; Pisarevskiy, Sergei; Korenaga, J.; Gardoll, Stephen (2014)
      To address the question of secular changes in the speed of the supercontinent cycle, we use two major databases for the last 2.5 Gyr: the timing and locations of collisional and accretionary orogens, and average plate ...
    • Iron Formations: Their Origins and Implications for Ancient Seawater Chemistry
      Bekker, A.; Planavsky, N.; Rasmussen, Birger; Krapez, Bryan; Hofmann, A.; Slack, J.; Rouxel, O.; Konhauser, K. (2014)
      Iron formations are economically significant, iron- and silica-rich sedimentary rocks that are restricted to Precambrian successions. There are no known modern or Phanerozoic analogues for these deposits that are comparable ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.