The Influence of MHC and Immunoglobulins A and E on Host Resistance to Gastrointestinal Nematodes in Sheep
Access Status
Authors
Date
2011Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
Gastrointestinal nematode parasites in farmed animals are of particular importance due to their effects on production. In Australia, it is estimated that the direct and indirect effects of parasite infestation cost the animal production industries hundreds of millions of dollars each year. The main factors considered by immunologists when studying gastrointestinal nematode infections are the effects the host's response has on the parasite, which immunological components are responsible for these effects, genetic factors involved in controlling immunological responses, and the interactions between these forming an interconnecting multilevel relationship. In this paper, we describe the roles of immunoglobulins, in particular IgA and IgE, and the major histocompatibility complex in resistance to gastrointestinal parasites in sheep. We also draw evidence from other animal models to support the involvement of these immune components. Finally, we examine how IgA and IgE exert their influence and how methods may be developed to manage susceptible animals.
Related items
Showing items related by title, author, creator and subject.
-
Strickland, Victoria Judith (2011)Haemonchus contortus is a gastrointestinal nematode of significant importance in Australia and worldwide. It prevails in tropical zones, summer rainfall regions and mostly coastal areas in temperate regions. The high ...
-
Lee, Chee Yang (2009)The main aim of this project has been to provide insights into the genomic organization of the class II region of the ovine major histocompatibility complex (MHC), a chromosomal region containing genes that control adaptive ...
-
Moore, Brioni R. (2011)Murine malaria models have proved to be a valuable preclinical tool, particularly in the development of new concepts in the research of human malaria. Plasmodium berghei (P. berghei), is the most extensively studied and ...