Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Characterization of High-Temperature Proton-Exchange Membranes Based on Phosphotungstic Acid Functionalized Mesoporous Silica Nanocomposites for Fuel Cells

    Access Status
    Fulltext not available
    Authors
    Zeng, J.
    Jiang, San Ping
    Date
    2011
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Zeng, J. and Jiang, S.P. 2011. Characterization of High-Temperature Proton-Exchange Membranes Based on Phosphotungstic Acid Functionalized Mesoporous Silica Nanocomposites for Fuel Cells. The Journal of Physical Chemistry C. 115: pp. 11854-11863.
    Source Title
    The Journal of Physical Chemistry C
    DOI
    10.1021/jp201250r
    ISSN
    1932-7447
    School
    Department of Chemical Engineering
    URI
    http://hdl.handle.net/20.500.11937/19116
    Collection
    • Curtin Research Publications
    Abstract

    The synthesis and characteristics of high-temperature proton-exchange membranes based on mesoporous silica nanocomposite functionalized with phosphotungstic acid (HPW) were investigated in detail for applications in protonexchange membrane fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs). The HPWmeso-silica nanocomposites were characterized by small-angle X-ray scattering (SAXS), FTIR spectroscopy, Raman spectroscopy, TGA, N2 absorption isotherm, water uptake, TEM, conductivity, and fuel cell performance. The spectroscopy results indicate interactions between the Keggin anions of HPW and meso-silica and the possible formation of (SiOH2)(H2PW12O40 species. The results show that the proton conductivity of the HPWmesosilica nanocomposites depends strongly on the content ofHPW. The threshold for the proton conductivity of the nanocomposite is 10 wt %. The best proton conductivity is 0.07 S cm1 at 25 C under 100% relative humidity (RH) with an activation energy of ~14 kJ mol1, obtained on HPWmeso-silica nanocomposites with 6783% HPW. A PEMFC based on a HPWmeso-silica membrane produced a power output of 308 mW cm2 at 80 C and 80% RH in H2/O2, 206 mW cm2 at 80 C and 80% RH in H2/air, and 134 mW cm2 at 160 C in methanol/air without external humidification. The high tolerance of HPWmeso-silica nanocomposites toward RH fluctuations demonstrates the unique high water retention capability of HPWmeso-silica nanocomposites. The results indicate that HPWmeso-silica forms a promising proton-exchange membrane for PEMFCs and DMFCs operating at high temperatures.

    Related items

    Showing items related by title, author, creator and subject.

    • Phosphotungstic acid functionalized silica nanocomposites with tunable bicontinuous mesoporous structure and superior proton conductivity and stability for fuel cells
      Zeng, J.; Zhou, Y.; Li, L.; Jiang, San Ping (2011)
      A novel proton exchange membrane using phosphotungstic acid (HPW) as proton carrier and cubic bicontinuous Ia3d mesoporous silica (meso-silica) as framework material is successfully developed as proton exchange membranes ...
    • Correlation between proton conductivity, thermal stability and structural symmetries in novel HPW-meso-silica nanocomposite membranes and their performance in direct methanol fuel cells
      Zeng, J.; Shen, P.; Lu, S.; Xiang, Y.; Li, L.; De Marco, Roland; Jiang, San Ping (2012)
      The intrinsic relationship between proton conductivity, thermal stability and structural symmetries of phosphotungstic acid (HPW)-functionalized mesoporous silica (HPW-meso-silica) membrane was investigated with mesoporous ...
    • A novel inorganic proton exchange membrane based on self-assembled HPW-meso-silica for direct methanol fuel cells
      Lu, J.; Tang, H.; Lu, S.; Wu, Hongwei; Jiang, San Ping (2011)
      Direct methanol fuel cells (DMFCs) based on high-temperature (100-300 C) proton exchange membranes (HT-PEMs) offer significant advantages over the current low-temperature DMFCs based on perfluorosulfonic acid (e.g., ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.