Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    The Greenland ice sheet response to transient climate change

    Access Status
    Fulltext not available
    Authors
    Ren, Diandong
    Fu, R.
    Leslie, L.
    Chen, J.
    Wilson, C.
    Karoly, D.
    Date
    2011
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Ren, Diandong and Fu, Rong and Leslie, Lance M. and Chen, Jianli and Wilson, Clark R. and Karoly, David J. 2011. The Greenland ice sheet response to transient climate change. Journal of Climate. 24 (13): pp. 3469-3483.
    Source Title
    Journal of Climate
    DOI
    10.1175/2011JCLI3708.1
    ISSN
    0894-8755
    URI
    http://hdl.handle.net/20.500.11937/19222
    Collection
    • Curtin Research Publications
    Abstract

    This study applies a multiphase, multiple-rheology, scalable, and extensible geofluid model to the Greenland Ice Sheet (GrIS). The model is driven by monthly atmospheric forcing from global climate model simulations. Novel features of the model, referred to as the scalable and extensible geofluid modeling system (SEGMENT-Ice), include using the full Navier–Stokes equations to account for nonlocal dynamic balance and its influence on ice flow, and a granular sliding layer between the bottom ice layer and the lithosphere layer to provide a mechanism for possible large-scale surges in a warmer future climate (granular basal layer is for certain specific regions, though). Monthly climate of SEGMENT-Ice allows an investigation of detailed features such as seasonal melt area extent (SME) over Greenland. The model reproduced reasonably well the annual maximum SME and total ice mass lost rate when compared observations from the Special Sensing Microwave Imager (SSM/I) and Gravity Recovery and Climate Experiment (GRACE) over the past few decades.The SEGMENT-Ice simulations are driven by projections from two relatively high-resolution climate models, the NCAR Community Climate System Model, version 3 (CCSM3) and the Model for Interdisciplinary Research on Climate 3.2, high-resolution version [MIROC3.2(hires)], under a realistic twenty-first-century greenhouse gas emission scenario. They suggest that the surface flow would be enhanced over the entire GrIS owing to a reduction of ice viscosity as the temperature increases, despite the small change in the ice surface topography over the interior of Greenland. With increased surface flow speed, strain heating induces more rapid heating in the ice at levels deeper than due to diffusion alone. Basal sliding, especially for granular sediments, provides an efficient mechanism for fast-glacier acceleration and enhanced mass loss. This mechanism, absent from other models, provides a rapid dynamic response to climate change. Net mass loss estimates from the new model should reach ~220 km3 yr-1 by 2100, significantly higher than estimates by the Intergovernmental Panel on Climate Change (IPCC) Assessment Report 4 (AR4) of ~50–100 km3 yr-1. By 2100, the perennial frozen surface area decreases up to ~60%, to ~7 × 105 km2, indicating a massive expansion of the ablation zone. Ice mass change patterns, particularly along the periphery, are very similar between the two climate models.

    Related items

    Showing items related by title, author, creator and subject.

    • Greenland ice sheet response to transient climate change: Consensus between two CGCMs
      Ren, Diandong; Leslie, L.; Karoly, D. (2008)
      Possible accelerated melting of the Greenland ice sheet in the 21st century has profound implications for sea-level rise and for climate change feedback. This study quantifies the potential melting of the Greenland ...
    • Evaluation of preindustrial to present-day black carbon and its albedo forcing from ACCMIP (Atmospheric Chemistry and Climate Model Intercomparison Project)
      Lee, Y.H.; Lamarque, J.-F.; Flanner, M.G.; Jiao, C.; Shindell, D.T.; Berntsen, T.; Bisiaux, M.M.; Cao, J.; Collins, W.J.; Curran, M.; Edwards, R.; Faluvegi, G.; Ghan, S.; Horowitz, L.W.; McConnell, J.R.; Myhre, G.; Nagashima, T.; Naik, V.; Rumbold, S.T.; Skeie, R.B.; Takemura, T.; Thevenon, F. (2012)
      As part of the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP), we evaluate the historical black carbon (BC) aerosols simulated by 8 ACCMIP models against observations including 12 ice core records, ...
    • Evaluation of preindustrial to present-day black carbon and its albedo forcing from Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP)
      Lee, Y.; Lamarque, J.; Flanner, M.; Jiao, C.; Shindell, D.; Berntsen, T.; Bisiaux, M.; Cao, J.; Collins, W.; Curran, M.; Edwards, Peter; Faluvegi, G.; Ghan, S.; Horowitz, L.; McConnell, J.; Ming, J.; Myhre, G.; Nagashima, T.; Naik, V.; Rumbold, S.; Skeie, R.; Sudo, K.; Takemura, T.; Thevenon, F.; Xu, B.; Yoon, J. (2013)
      As part of the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP), we evaluate the historical black carbon (BC) aerosols simulated by 8 ACCMIP models against observations including 12 ice core records, ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.