Integrating rehabilitation, restoration and conservation for a sustainable jarrah forest future during climate disruption
Access Status
Authors
Date
2015Type
Metadata
Show full item recordCitation
Source Title
DOI
ISSN
School
Collection
Abstract
The environment of the northern jarrah (Eucalyptus marginata) forest (NJF) of Mediterranean-climate, south-western Australia is characterised by deeply weathered soil profiles and low fertility, reflecting long geological stasis. This fire-prone environment is characterised by primary forests of low productivity but high biomass. Since European settlement (1829), the NJF has been structurally transformed by deforestation and resource extraction, including logging and mining (principally for bauxite). Rainfall has declined by 15–20% since 1970, with projections for further decline. A new hydrological regime foreshadows regolith drying, with a changed climate leading to more unplanned, intense fires. Declining productivity, coupled with rehabilitation more suited to a wetter climate, places stress on tree growth and compromises biodiversity. Thus, ecological disruption likely follows from interactions between climate change and historical exploitation. The complex challenges posed by these interactions require multifaceted and novel solutions. We argue that under drying conditions, maintenance of productivity while conserving biodiversity can best be achieved by changing the focus of rehabilitation to the understorey. This would coincide with protecting and restoring surrounding unmined forest with emphasis on the overstorey.Presently, state-of-the-science rehabilitation seeks to restore jarrah forest, following bauxite mining. This goal is unlikely to be achievable across extensive areas under climate change projections. Rather, a focus on restoring understorey following mining would provide a more positive water balance in the wider forest matrix. This approach recognises loss of forest values through mining, but anticipates conservation of biodiversity and important elements of forest structure by minimising ecologically unacceptable disturbance to surrounding forest.
Related items
Showing items related by title, author, creator and subject.
-
Majer, Jonathan; Heterick, Brian E.; Gohr, T.; Hughes, E.; Mounsher, L.; Grigg, A. (2013)Introduction: An assessment of whether rehabilitated mine sites have resulted in natural or novel ecosystems requires monitoring over considerable periods of time or the use of space-for-time substitution (chronosequence) ...
-
Majer, Jonathan; Heterick, Brian; Gohr, T.; Hughes, E.; Mounsher, L.; Grigg, A. (2013)Introduction: An assessment of whether rehabilitated mine sites have resulted in natural or novel ecosystems requires monitoring over considerable periods of time or the use of space-for-time substitution (chronosequence) ...
-
Standish, R.; Daws, M.; Gove, Aaron; Didham, R.; Grigg, A.; Koch, J.; Hobbs, R. (2015)Global climate change is projected to increase the frequency and intensity of drought in dry regions due to warming temperatures and declining rainfall. Severe drought can trigger tree mortality and drive persistent ...