Control of a Solid Oxide Fuel Cell Power Plant in a Grid-Connected System
Access Status
Authors
Date
2007Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Remarks
Copyright © 2007 IEEE This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright.
Collection
Abstract
The fastest and yet most prudent ways of changing the output power level of a solid oxide fuel cell power plant connected to the ac-grid are explored. The operating state of the fuel cell power plant is examined in term of the concept of feasible operating area of a cell. The utilization factor of the cell stack is maintained constant in steady-state by feeding natural gas to the fuel processor at a rate proportional to the current drawn from the stack. The fluctuations of the utilization factor in the transient state due to a change in operating power level can be constrained to the allowable range by strategically controlling the current drawn by the power conditioning unit. Based on measured variables and dynamic characteristics of the fuel processor, four strategies of controlling current are compared to arrive at the strategy that results in minimum transient time for a given power change. The proposed control schemes are verified through computer simulations.
Related items
Showing items related by title, author, creator and subject.
-
Lim, Pei Yi (2011)At present, there are still a large number of people living in isolated areas, particularly in developing countries, who have no immediate access to the main electricity grid. Most of the energy demands of these remote ...
-
Jiao, Y.; Zhang, L.; An, W.; Zhou, W.; Sha, Y.; Shao, Zongping; Bai, J.; Li, S. (2016)Solid oxide fuel cells (SOFCs) are promising power-generation systems to utilize methane or methane-based fuels with a high energy efficiency and low environmental impact. A successive multi-stage process is performed to ...
-
Ahmed, Khaliq; Föger, K. (2017)Copyright © 2017 by ASME. Fuel cell technology has undergone extensive research and development in the past 20 years. Even though it has not yet made a commercial breakthrough, it is still seen as a promising enabling ...