Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Process analysis of microalgae biomass thermal disruption for biofuel production

    Access Status
    Fulltext not available
    Authors
    Artan, A.
    Acquah, C.
    Danquah, Michael
    Ongkudon, C.
    Date
    2015
    Type
    Book Chapter
    
    Metadata
    Show full item record
    Citation
    Artan, A. and Acquah, C. and Danquah, M. and Ongkudon, C. 2015. Process analysis of microalgae biomass thermal disruption for biofuel production. In Advances in Bioprocess Technology, Ed. P. Ravindra, 113-131. Springer.
    Source Title
    Advances in Bioprocess Technology
    DOI
    10.1007/978-3-319-17915-5_7
    ISBN
    9783319179148
    School
    Curtin Sarawak
    URI
    http://hdl.handle.net/20.500.11937/19883
    Collection
    • Curtin Research Publications
    Abstract

    © Springer International Publishing Switzerland 2015. The continual usage of petroleum-sourced fuels is now widely recognized as unsustainable due to the depleting supplies, and the contribution of these fuels to the accumulation of greenhouse gases in the environment. A suitable alternative is the utilisation of renewable transport fuels. These fuels are environmentally friendly and economically sustainable. Biodiesel and bioethanol derived from plant lipids and carbohydrate-based crops are potential renewable alternatives to petroleum fuels. In recent years, the cultivation of microalgae as an alternative feedstock for the production of biofuel has received significant attention. This is as a result of the fact that, they have a fast growth rate, can accumulate high quantities of lipids and carbohydrates intracellularly for the production of biodiesel and bioethanol, respectively. That notwithstanding, the processes involved in the cultivation of microalgae, dewatering, biochemical extraction, and conversion to biofuels are energy intensive and as a result undermine its full-scale application potentials. This therefore has necessitated the need for an intensive attention and research in order to debottleneck the aforementioned areas. Electroporation, High pressure homogenization (HPH), Ultrasonic and Bead mills are examples of present cell disruption technologies. However, the electroportation process which at present seems more energy efficient than the rest has only been tried on a lab scale, and yet to be experimented on an industrial scale capacity. In this work, a successful design of an energy-efficient cell disruption technology that can treat up to a mass scale of 10,000gal/annum of lipids was designed by means of thermal lysis. A comparative analysis with other methods reveals that the designed system is significantly reliable, with the least fractional energy registered as low as 0.41 at an algal concentration of 6kg/m3.

    Related items

    Showing items related by title, author, creator and subject.

    • High energy density fuels derived from mallee biomass: fuel properties and implications
      Abdullah, Hanisom binti (2010)
      Mallee biomass is considered to be a second-generation renewable feedstock in Australia and will play an important role in bioenergy development in Australia. Its production is of large-scale, low cost, small carbon ...
    • Energy balance of biodiesel production from rapeseed in Western Australia
      Rustandi, Ferry (2009)
      Increasing energy consumption in Australian transport sector, rapidly depleting amount of Australian oil reserves, and the environmental concerns that arise from the associated greenhouse gas emissions produced by the ...
    • Bioslurry as a Fuel. 2. Life-Cycle Energy and Carbon Footprints of Bioslurry Fuels from Mallee Biomass in Western Australia
      Yu, Yun; Wu, Hongwei (2010)
      This paper reports a life-cycle assessment on energy and carbon footprints of bio-oil/char slurry (i.e., bioslurry) fuel from mallee in Western Australia (WA). The results demonstrate that bioslurry fuels have small energy ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.