Show simple item record

dc.contributor.authorHe, Y.
dc.contributor.authorSun, Jie
dc.date.accessioned2017-01-30T12:16:23Z
dc.date.available2017-01-30T12:16:23Z
dc.date.created2014-09-02T20:01:17Z
dc.date.issued2012
dc.identifier.citationHe, Y. and Sun, J. 2012. Minimum recession-compatible subsets of closed convex sets. Journal of Global Optimization. 52 (2): pp. 253-263.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/19910
dc.identifier.doi10.1007/s10898-011-9662-9
dc.description.abstract

A subset B of a closed convex set A is recession-compatible with respect to A if A can be expressed as the Minkowski sum of B and the recession cone of A. We show that if A contains no line, then there exists a recession-compatible subset of A that is minimal with respect to set inclusion. The proof only uses basic facts of convex analysis and does not depend on Zorn’s Lemma. An application of this result to the error bound theory in optimization is presented.

dc.publisherSpringer
dc.titleMinimum recession-compatible subsets of closed convex sets
dc.typeJournal Article
dcterms.source.volume52
dcterms.source.startPage253
dcterms.source.endPage263
dcterms.source.issn09255001
dcterms.source.titleJournal of Global Optimization
curtin.note

The final publication is available at Springer via http://doi.org/10.1007/s10898-011-9662-9.

curtin.accessStatusOpen access


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record