Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    High resolution seismic imaging at the planned tunnel entrance to the Forsmark repository for spent nuclear fuel, central Sweden

    Access Status
    Fulltext not available
    Authors
    Brojerdi, F.
    Zhang, F.
    Juhlin, Christopher
    Malehmir, A.
    Lehtimäki, T.
    Mattsson, H.
    Curtis, P.
    Date
    2014
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Brojerdi, F. and Zhang, F. and Juhlin, C. and Malehmir, A. and Lehtimäki, T. and Mattsson, H. and Curtis, P. 2014. High resolution seismic imaging at the planned tunnel entrance to the Forsmark repository for spent nuclear fuel, central Sweden. Near Surface Geophysics. 12 (6): pp. 709-719.
    Source Title
    Near Surface Geophysics
    DOI
    10.3997/1873-0604.2014028
    ISSN
    1569-4445
    School
    Department of Exploration Geophysics
    URI
    http://hdl.handle.net/20.500.11937/20049
    Collection
    • Curtin Research Publications
    Abstract

    © 2014 European Association of Geoscientists & Engineers. The Swedish Nuclear Waste Management Company (SKB) plans to build a repository for storage of high-level radioactive spent nuclear fuel at the Forsmark site in central Sweden at a depth of about 470 m. The planned repository will cover an area of about 3.6 km2 at this depth. Prior to beginning excavation and tunneling, some detailed geophysical surveys are being performed at the planned site. One of these was a refraction seismic survey to determine depth to bedrock in the vicinity of the planned access ramp. Two lines, each about 300 m long and spaced about 35 m apart, were acquired in August 2011. Since the bedrock topography is known to be highly variable, a close receiver (2 m) and source (6 m) spacing was required to map it. This close spacing allowed the data also to be treated as reflection seismic data and some adjustments to the acquisition procedure were made in the field with this in mind to aid in the later processing. The main adjustment was that seismic data were recorded on all geophone stations simultaneously. That is, as shots were fired along one line, data were recorded along both that line and the other one. Likewise, when shots were fired along the other line, data were recorded along that line and the first line. This adjustment allowed semi-3D coverage between the lines. Results from first break traveltime tomography along the lines indicate a depth to bedrock that is greater than that found from geotechnical observations along the lines. This discrepancy is attributed to the uppermost bedrock being highly fractured and having a velocity significantly below that expected from the intact bedrock deeper down. Reflection seismic processing of the data shows a reflection at about 20 ms (about 60 m). The reflection is interpreted to have a gentle northwesterly dip component to it. Comparison with core data in the area suggests that the reflection is from a thin (a few metres thick) fracture zone, although none of the boreholes actually penetrate the reflector where it is mapped by the seismic data. This fracture zone may be part of a larger fracture zone mapped by core drilling further to the east. The newly mapped reflector may be crossed by the ramp when excavation begins. Further seismic surveying towards the west is required to verify if this will be the case.

    Related items

    Showing items related by title, author, creator and subject.

    • Feasibility of rock characterization for mineral exploration using seismic data
      Harrison, Christopher Bernard (2009)
      The use of seismic methods in hard rock environments in Western Australia for mineral exploration is a new and burgeoning technology. Traditionally, mineral exploration has relied upon potential field methods and surface ...
    • Full waveform inversion of seismic reflection data from the Forsmark planned repository for spent nuclear fuel, eastern central Sweden
      Zhang, F.; Juhlin, Christopher (2013)
      The Swedish Nuclear Fuel and Waste Management Company (SKB) has been carrying out extensive studies at the planned repository for spent nuclear fuel at the Forsmark site in the eastern part of central Sweden since 2002. ...
    • Comparison of surface seismic sources at the CO2 SINK site, Ketzin, Germany
      Yordkayhun, S.; Ivanova, A.; Giese, R.; Juhlin, Christopher; Cosma, C. (2009)
      In 2004 three seismic surface sources (VIBSIST, accelerated weight drop and MiniVib) were tested in a pilot study at the Ketzin test site, Germany, a study site for geological storage of CO2 (EU project CO2 SINK). The ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.