Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Lu-Hf geochronology on cm-sized garnets using microsampling: New constraints on garnet growth rates and duration of metamorphism during continental collision (Menderes Massif, Turkey)

    Access Status
    Fulltext not available
    Authors
    Schmidt, A.
    Pourteau, Amaury
    Candan, O.
    Oberhänsli, R.
    Date
    2015
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Schmidt, A. and Pourteau, A. and Candan, O. and Oberhänsli, R. 2015. Lu-Hf geochronology on cm-sized garnets using microsampling: New constraints on garnet growth rates and duration of metamorphism during continental collision (Menderes Massif, Turkey). Earth and Planetary Science Letters. 432: pp. 24-35.
    Source Title
    Earth and Planetary Science Letters
    DOI
    10.1016/j.epsl.2015.09.015
    ISSN
    0012-821X
    School
    Department of Applied Geology
    URI
    http://hdl.handle.net/20.500.11937/20122
    Collection
    • Curtin Research Publications
    Abstract

    © 2015 Elsevier B.V. This study shows Lu-Hf geochronology of zoned garnet crystals contained in mica schists from the southern Menderes Massif, Turkey. Selected samples are four 3-5 cm large garnet megacrysts of which several consecutive garnet shells have been sampled with a micro-saw and analyzed for dating. The results are used to extract growth rates of garnet, and also to improve the time constraint for Alpine-aged overprint of the Pan-African basement in the Menderes Massif.Lu-Hf ages of the sampled garnet shells are determined by two-point garnet-only isochrons using the garnets' Lu-depleted rim compositions. This yields a consistent decrease of age information from core to rim segments of individual garnet crystals and the calculated isochron ages propose a time frame of growth between 42.6. ±. 1.9 and 34.8. ±. 3.1 Ma. Major element profiles in the investigated garnets characterize zoning patterns indicative of prograde conditions: Rayleigh fractionated bell-shaped Mn and decreasing Fe/(Fe + Mg) are recorded by the garnets' core to rim compositions. Therefore the obtained Lu-Hf ages record timing of early prograde growth for the cores of the garnets. Two of the large garnet crystals also yield isochron ages of 58.83. ±. 0.69 and 50.16. ±. 0.84 Ma in their innermost cores, which appear to record an early nucleation event. This view, however, is not in concordance with the observed major element profiles of these garnets, and therefore is interpreted with caution. Termination of the garnet growth period is determined through the calculation of radial growth rates based on the size of the garnets and the Lu-Hf ages obtained for consecutive shells. Extrapolation of these rates potentially constrains the total duration for garnet growth terminating at 31. ±. 6 Ma. Comparison of the growth rates calculated for individual crystals shows a variety of slow and fast growing garnets, and similar results have been previously obtained with the Rb-Sr and Sm-Nd isotope systems.The new data provides a precise age determination for prograde Barrovian metamorphism in the southern Menderes Massif, which so far was placed between 63 and 27 Ma on the basis of mica Rb-Sr and Ar-Ar dating. This study provides new constraints crucial to the understanding of the tectonic evolution of southwest Anatolia and the Aegean realm, as it yields a shorter outline for Alpine aged continental collision.

    Related items

    Showing items related by title, author, creator and subject.

    • Diffusional homogenization of light REE in garnet from the Day Nui Con Voi Massif in N-Vietnam: Implications for Sm–Nd geochronology and timing of metamorphism in the Red River shear zone.
      Anczkiewicz, R; Thirlwall, Matthew; Alard, Oliver; Rogers, N; Clark, Chris (2012)
      High-grade migmatitic and mylonitic gneisses from the Day Nui Con Voi massif in northern Vietnam record temperatures of 760–810 °C at pressures of 6–10 kbars. High temperature conditions have resulted in the development ...
    • Decoding polyphase migmatites using geochronology and phase equilibria modelling
      Yakymchuk, C.; Brown, M.; Clark, C.; Korhonen, F.; Piccoli, P.; Siddoway, C.; Taylor, Richard; Vervoort, J. (2015)
      In this study, in situ U–Pb monazite ages and Lu–Hf garnet geochronology are used to distinguish mineral parageneses developed during Devonian–Carboniferous and Cretaceous events in migmatitic paragneiss and orthogneiss ...
    • Timing of Variscan HP-HT metamorphism in the Moldanubian Zone of the Bohemian Massif: U-Pb SHRIMP dating on multiply zoned zircons from a granulite from the Dunkelsteiner Wald Massif, Lower Austria
      Friedl, G.; Cooke, R.; Finger, F.; McNaughton, Neal; Fletcher, Ian (2011)
      In an attempt to better constrain the timing of Variscan HP-HT metamorphism in the SE Bohemian Massif we have dated zoned zircons from a garnet-kyanite granulite of granitic composition from the Dunkelsteiner Wald Massif, ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.