Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Nanoporous Quantum Filters: Inside Vapor-Liquid Transitions of Quantum Fluids inNanopores

    Access Status
    Fulltext not available
    Authors
    Kowalczyk, Poitr
    Gauden, P.
    Terzyk, A.
    Date
    2010
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Kowalczyk, P. and Gauden, P. and Terzyk, A. 2010. Nanoporous Quantum Filters: Inside Vapor-Liquid Transitions of Quantum Fluids inNanopores. Journal of Physical Chemistry B. 114 (15): pp. 5047-5052.
    Source Title
    Journal of Physical Chemistry B
    ISSN
    1520-6106
    URI
    http://hdl.handle.net/20.500.11937/20156
    Collection
    • Curtin Research Publications
    Abstract

    We study the impact of quantum fluctuations on the phase diagram of a realistic quantum liquid, namely, neon confined in atomistic carbon nanopores at 35 K. Due to the action of attractive solid-fluid potential, both classical and quantum neon vapor condense at lower pressures in carbonaceous nanopores than bulk neon. However, we found that continuous van der Waals s-shaped isotherms, which include stable, metastable, and unstable states computed from classical simulations, are shifted to lower values of pressures in comparison to those from path integral calculations. This systematic underestimation of equilibrium vapor-liquid transition pressures as well as spinodals in classical simulations is caused by neglecting the zero-point motion of adsorbed neon at 35 K. Delocalized neon atoms excluded more volume in the adsorbed phase than the classical neon particles. Thus, adsorbed and compressed liquidlike phases of quantum neon in the studied nanopores are characterized by lower densities than their classical counterparts. Interestingly, equilibrium vapor-liquidtransition pressures of confined neon at 35 K computed from classical simulations are shifted to lower values in comparison to those computed from quantum simulations by ˜30% for different pore sizes. Simulations of classical neon at higher effective temperatures reveal that liquidlike phases of confined quantum neon at 35 K look like classical ones at higher effective temperature of 37 K. Our calculations clearly show that quantum fluctuations cannot be neglected in calculations of phase transitions of quantum fluids at cryogenic temperatures.

    Related items

    Showing items related by title, author, creator and subject.

    • Thermodynamics of Hydrogen Adsorption in Slit-like Carbon Nanopores at 77 K. Classical versus Path-Integral Monte Carlo Simulations
      Kowalczyk, Piotr; Gauden, P.; Terzyk, A.; Bhatia, S. (2007)
      Hydrogen in slit-like carbon nanopores at 77 K represents a quantum fluid in strong confinement. We have used path-integral grand canonical Monte Carlo and classical grand canonical Monte Carlo simulations for the ...
    • Cryogenic Noble Gas Separation without Distillation: The Effect of Carbon Surface Curvature on Adsorptive Separation
      Kowalczyk, Piotr; Gauden, P.; Terzyk, A. (2012)
      Applying a novel self-consistent Feynman−Kleinert−Sesé variational approach (Sesé, L. M. Mol. Phys.1999, 97, 881−896) to quantum thermodynamics and the ideal adsorbed solution theory, we studied adsorption and equilibrium ...
    • Static and thermodynamic properties of low-density supercritical 4He—breakdown of the Feynman–Hibbs approximation
      Kowalczyk, Poitr; Brualla, L.; Gauden, P.; Terzyk, A. (2009)
      We study the applicability of the semiclassical Feynman and Hibbs (FH) (second-order orfourth-order) effective potentials to the description of the thermodynamic properties of quantumfluids at finite temperatures. First, ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.