IEEE Region 10 Annual International Conference, Proceedings/TENCON
Access Status
Authors
Date
2009Type
Metadata
Show full item recordCitation
Source Title
Source Conference
ISBN
Collection
Abstract
In this paper, a new power sharing control method for a microgrid with several distributed generation units is proposed. The presence of both inertial and non-inertial sources with different power ratings, maximum power point tracking, and various types of loads pose a great challenge for the power sharing and system stability. The conventional droop control method is modified to achieve the desired power sharing ensuring system stability in a highly resistive network. A transformation matrix is formed to derive equivalent real and reactive power output of the converter and equivalent feedback gain matrix for the modified droop equation. The proposed control strategy, aimed for the prototype microgrid planned at Queensland University of Technology, is validated through extensive simulation results using PSCAD/EMTDC software.
Related items
Showing items related by title, author, creator and subject.
-
Lim, Pei Yi (2011)At present, there are still a large number of people living in isolated areas, particularly in developing countries, who have no immediate access to the main electricity grid. Most of the energy demands of these remote ...
-
Tiako, Remy (2012)Recently large-scale wind farms are integrated quite commonly into power systems. The stochastic operation of wind plants due to intermittency and intra-interval effects of the wind is a problematic issue to determine the ...
-
Yip, Leslie Sai-chung (2003)The perspective that asymmetrical power relationship on vertical channel would lead to dominating partner exploitation with the use of coercive power is examined within the context of horizontal channel exchange relationship ...