From spin noise to systematics: Stochastic processes in the first International Pulsar Timing Array data release
Access Status
Authors
Date
2016Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
We analyse the stochastic properties of the 49 pulsars that comprise the first International Pulsar Timing Array (IPTA) data release. We use Bayesian methodology, performing model selection to determine the optimal description of the stochastic signals present in each pulsar. In addition to spin-noise and dispersion-measure (DM) variations, these models can include timing noise unique to a single observing system, or frequency band. We show the improved radio-frequency coverage and presence of overlapping data from different observing systems in the IPTA data set enables us to separate both system and band-dependent effects with much greater efficacy than in the individual pulsar timing array (PTA) data sets. For example, we show that PSR J1643-1224 has, in addition to DM variations, significant band-dependent noise that is coherent between PTAs which we interpret as coming from time-variable scattering or refraction in the ionized interstellar medium. Failing to model these different contributions appropriately can dramatically alter the astrophysical interpretation of the stochastic signals observed in the residuals. In some cases, the spectral exponent of the spin-noise signal can vary from 1.6 to 4 depending upon the model, which has direct implications for the long-term sensitivity of the pulsar to a stochastic gravitational-wave (GW) background. By using a more appropriate model, however, we can greatly improve a pulsar's sensitivity to GWs. For example, including system and band-dependent signals in the PSR J0437-4715 data set improves the upper limit on a fiducial GW background by ~60 per cent compared to a model that includes DM variations and spin-noise only.
Related items
Showing items related by title, author, creator and subject.
-
Lentati, L.; Alexander, P.; Hobson, P.; Feroz, F.; van Haasteren, R.; Lee, K.; Shannon, Ryan (2014)A new Bayesian software package for the analysis of pulsar timing data is presented in the form of TEMPONEST which allows for the robust determination of the non-linear pulsar timing solution simultaneously with a range ...
-
Zhu, W.; Berndsen, A.; Madsen, E.; Tan, M.; Stairs, I.; Brazier, A.; Lazarus, P.; Lynch, R.; Scholz, P.; Stovall, K.; Ransom, S.; Banaszak, S.; Biwer, C.; Cohen, S.; Dartez, L.; Flanigan, J.; Lunsford, G.; Martinez, J.; Mata, A.; Rohr, M.; Walker, A.; Allen, B.; Bhat, Ramesh; Bogdanova, S.; Camilo, F.; Chatterjee, S.; Cordes, J.; Crawford, F.; Deneva, J.; Desvignes, G.; Ferdman, R.; Freire, P.; Hessels, J.; Jenet, F.; Kaplan, D.; Kaspi, V.; Knispel, B.; Lee, K.; van Leeuwen, J.; Lyne, A.; McLaughlin, M.; Siemens, X.; Spitler, L.; Venkataraman, A. (2014)In the modern era of big data, many fields of astronomy are generating huge volumes of data, the analysis of which can sometimes be the limiting factor in research. Fortunately, computer scientists have developed powerful ...
-
Lam, M.; Cordes, J.; Chatterjee, S.; Arzoumanian, Z.; Crowter, K.; Demorest, P.; Dolch, T.; Ellis, J.; Ferdman, R.; Fonseca, E.; Gonzalez, M.; Jones, G.; Jones, M.; Levin, L.; Madison, D.; McLaughlin, M.; Nice, D.; Pennucci, T.; Ransom, S.; Shannon, Ryan; Siemens, X.; Stairs, I.; Stovall, K.; Swiggum, J.; Zhu, W. (2017)Gravitational wave (GW) astronomy using a pulsar timing array requires high-quality millisecond pulsars (MSPs), correctable interstellar propagation delays, and high-precision measurements of pulse times of arrival. Here ...