Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Carbon footprint and embodied energy assessment of a civil works program in a residential estate of Western Australia

    Access Status
    Fulltext not available
    Authors
    Biswas, Wahidul
    Date
    2013
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Biswas, Wahidul K. 2013. Carbon footprint and embodied energy assessment of a civil works program in a residential estate of Western Australia. The International Journal of Life Cycle Assessment. 19 (4): pp. 732-744.
    Source Title
    The International Journal of Life Cycle Assessment
    DOI
    10.1007/s11367-013-0681-2
    ISSN
    0948-3349
    URI
    http://hdl.handle.net/20.500.11937/20352
    Collection
    • Curtin Research Publications
    Abstract

    Purpose: With building construction and demolition waste accounting for 50 % of land fill space, the diversion of reusable materials is essential for Perth’s environment. The reuse and recovery of embodied energy-intensive construction materials during civil engineering works programs can offer significant energy savings and assist in the mitigation of the carbon footprint. Methods: A streamlined life cycle assessment, with limited focus, was carried out to determine the carbon footprint and embodied energy associated with a 100-m section of road base. A life cycle inventory of inputs (energy and materials) for all processes that occurred during the development of a 100-mroad section was developed. Information regarding the energy and materials used for road construction work was obtained from the Perth-based firm, Cossill and Webley, Consulting Engineers. These inputs were inserted into Simapro LCA software to calculate the associated greenhouse gas emissions and embodied energy required for the construction and maintenance of a 100-m road section using. Two approaches were employed; a traditional approach that predominantly employed virgin materials, and a recycling approach.Results and discussion: The GHG emissions and embodied energy associated with the construction of a 100-m road section using virgin materials are 180 tonnes of CO2-e and10.7 terajoules (TJ), respectively. The substitution of crushed rock with recycled brick road base does not appear to reduce the carbon footprint in the pre-construction stage (i.e. from mining to material construction, plus transportation of materials to the construction site). However, this replacement could potentially offer environmental benefits by reducing quarrying activities, which would not only conserve native bushland but also reduce the loss of biodiversity along with reducing the space and cost requirements associated with landfill. In terms of carbon footprint, it appears that GHG emissions are reduced significantly when using recycled asphalt, as opposed to other materials. About 22 to 30 % of greenhouse gas (GHG) emissions can be avoided by replacing 50 to 100%of virgin asphalt with Reclaimed Asphalt Pavement (RAP) during the maintenance period. Conclusions: The use of recycled building and road construction materials such as asphalt, concrete, and limestone can potentially reduce the embodied energy and greenhouse gas emissions associated with road construction. The recycling approach that uses 100 % reused crushed rock base and recycled concrete rubble, and 15 % RAP during the maintenance period could reduce the total carbon footprint by approximately 6 %. This large carbon saving in pavement construction is made possible by increasing the percentage of RAP in the wearing course.

    Related items

    Showing items related by title, author, creator and subject.

    • Application of life cycle assessment approach to deliver low carbon houses at regional level in Western Australia
      Lawania, K.; Biswas, Wahidul (2017)
      Purpose: Australian building sector contributes 23% of the total greenhouse gas (GHG) emissions. This is particularly important for Western Australia (WA) as the houses here are made of energy- and carbon-intensive clay ...
    • Life cycle assessment of roadworks in United Arab Emirates: Recycled construction waste, reclaimed asphalt pavement, warm-mix asphalt and blast furnace slag use against traditional approach
      Hasan, Umair; Whyte, Andrew ; Al Jassmi, H. (2020)
      © 2020 Elsevier Ltd Life cycle assessment methodology was applied in this study to calculate environmental impacts of a 3.5-km-long dual carriageway asphalt highway section case study in Abu Dhabi across following ...
    • Optimum use of the flexible pavement condition indicators in pavement management system
      Shiyab, Adnan M S H (2007)
      This study aimed at investigating the current practices and methods adopted by roads agencies around the world with regard to collection, analysis and utilization of the data elements pertaining to the main pavement ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.