Show simple item record

dc.contributor.authorThompson, Roger
dc.contributor.editorGreg Martin, Exec Director, PATREC
dc.date.accessioned2017-01-30T12:18:53Z
dc.date.available2017-01-30T12:18:53Z
dc.date.created2011-10-25T20:01:27Z
dc.date.issued2009
dc.identifier.citationThompson, Roger. 2009. Ultra-heavy Axle Loads: Design and Management Strategies for Mine Pavements, in T Carter (ed), 2009 PATREC Research Forum, Sep 24 2009. Perth: Planning & Transport Research Centre of WA.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/20368
dc.description.abstract

The drive for greater cost efficiencies in surface mining has led to the development of ultra-heavy off highway trucks currently capable of hauling payloads of 345 tons. Typical axle loads in excess of 400 tons are applied to unpaved mine haul roads that have historically been designed empirically, relying heavily on local experience. In the absence of a formal haul road design methodology, good roads eventually result ? but the learning curve is steep & slow. This approach does not lend itself to an understanding of the road design process and more importantly, if the haul road performance is sub-standard, does not easily allow the underlying cause of the poor performance to be identified. With the trend in increasing truck size, haul road performance has become unpredictable, difficult to manage and costs of both maintaining the road and operating the truck have also increased prohibitively. Most surface mine operators agree good roads are desirable, but find it difficult to translate this requirement into an effective and responsive road design and maintenance management system.To meet this need, an integrated approach to pavement system geometric, structural, functional and maintenance design components was developed, taking into account road construction costs, vehicle operating costs and road maintenance costs. Since mine roads are built and operated by private companies, minimisation of total transportation costs is required. This paper presents an integrated mine haul road design and management strategy and illustrates the value of its application through several application case studies. A mechanistic approach to structural design resulted in a 29% saving in construction costs and also provided better service, whilst the optimal selection and management of wearing-course materials also provided better functionality at lower total transportation cost. Environmental considerations were addressed by the characterisation of wearing course material performance , both from a rolling resistance and fuel consumption perspective and a fugitive dust emission modelling and palliation perspective.

dc.publisherPATREC
dc.relation.urihttp://www.patrec.uwa.edu.au/
dc.subjecthaulroad
dc.subjectMining
dc.subjecthaul
dc.subjectpavement
dc.subjectroad design
dc.titleUltra-heavy axle loads: Design and management strategies for mine pavements
dc.typeConference Paper
dcterms.source.titlePATREC research forum 2009
dcterms.source.seriesPATREC research forum 2009
dcterms.source.conferencePATREC research forum 2009
dcterms.source.conference-start-dateOct 1 2009
dcterms.source.conferencelocationBentley, Perth, WA
dcterms.source.placePerth, WA
curtin.note

Planning & Transport Research Centre (PATREC) is a collaborative program of Curtin University of Technology, Edith Cowan University, Murdoch University and The University of Western Australia, supported by the Government of Western Australia.

curtin.departmentWASM - Western Australian School of Mines
curtin.accessStatusOpen access


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record