Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Theses
    • View Item
    • espace Home
    • espace
    • Curtin Theses
    • View Item

    Graphs that are critical with respect to matching extension and diameter

    14912_Ananchuen, Nawarat 1994.pdf (2.258Mb)
    Access Status
    Open access
    Authors
    Ananchuen, Nawarat
    Date
    1994
    Supervisor
    Prof. Louis Caccetta
    Type
    Thesis
    Award
    PhD
    
    Metadata
    Show full item record
    School
    School of Mathematics and Statistics
    URI
    http://hdl.handle.net/20.500.11937/204
    Collection
    • Curtin Theses
    Abstract

    Let G be a simple connected graph on 2n vertices with a perfect matching. For 1 ≤ k ≤ n - 1, G is said to be k-extendable if for every matching M of size k in G there is a perfect matching in G containing all the edges of M. A k-extendable graph G is said to be k-critical (k-minimal) if G+uv (G-uv) is not k-extendable for every non-adjacent (adjacent) pair of vertices u and v of G. The problem that arises is that of characterizing k-extendable, k-critical and k-minimal graphs.In Chapter 2, we establish that δ(G) ≥ 1/2(n + k) is a sufficient condition for a bipartite graph G on 2n vertices to be k-extendable. For a graph G on 2n vertices with δ(G) ≥ n + k 1, n - k even and n/2 ≤ k ≤ n - 2, we prove that a necessary and sufficient condition for G to be k-extendable is that its independence number is at most n - k. We also establish that a k-extendable graph G of order 2n has k + 1 ≤ δ(G) n or δ(G) ≥ 2k + 1, 1 ≤ k ≤ n - 1. Further, we establish the existence of a k-extendable graph G on 2n vertices with δ(G) = j for each integer j Є [k + 1, n] u [2k + 1, 2n 1]. For k = n - 1 and n - 2, we completely characterize k-extendable graphs on 2n vertices. We conclude Chapter 2 with a variation of the concept of extendability to odd order graphs.In Chapter 3, we establish a number of properties of k-critical graphs. These results include sufficient conditions for k-extendable graphs to be k-critical. More specifically, we prove that for a k-extendable graph G ≠ K2n on 2n vertices, 2 ≤ k ≤ n - 1, if for every pair of non-adjacent vertices u and v of G there exists a dependent set S ( a subset S of V (G) is dependent if the induced subgraph G[S] has at least one edge) of G-u-v such that o(G-(S u {u,v})) = S, then G is k-critical. Moreover, for k = 2 this sufficient condition is also a necessary condition for non-bipartite graphs. We also establish a necessary condition, in terms of the minimum degree, for k-critical graphs.We conclude Chapter 3 by completely characterizing k-critical graphs on 2n vertices for k = 1, n - 1 and n - 2.Chapter 4 contains results on k-minimal graphs. These results include necessary and sufficient conditions for k-extendable graphs to be k-minimal. More specifically, we prove that for a k-extendable graph G on 2n vertices, 1 ≤ k ≤ n - 1, the following are equivalent:G is minimalfor every edge e = uv of G there exists a matching M of size k in G-e such that V(M) n {u,v} = ø and for every perfect matching F in G containing M, e Є F.for every edge e = uv of G there exists a vertex set S of G-u-v such that: M(S) ≥ k; o(G-e-S) = S - 2k + 2; and u and v belong to different odd components of G-e-S, where M(S) denotes a maximum matching in G[S].We also establish a necessary condition, in terms of minimum degree, for k-minimal and k-minimal bipartite graphs. In fact, we prove that a k-minimal graph G ≠ K2n on 2n vertices, 1 ≤ k ≤ n - 1, has minimum degree at most n + k - 1. For a k-minimal bipartite graph G ≠ Kn,n , 1 ≤ k ≤ n - 3, we show that δ(G) < ½(n + k).Chapter 1 provides the notation, terminology, general concepts and the problems concerning extendability graphs and (k,t)-critical graphs.

    Related items

    Showing items related by title, author, creator and subject.

    • Graphs with prescribed adjacency properties
      Ananchuen, Watcharaphong (1993)
      A graph G is said to have property P(m,n,k) if for any set of m + n distinct vertices there are at least k other vertices, each of which is adjacent to the first m vertices but not adjacent to any of the latter n vertices. ...
    • Bounds on the order of connected domination vertex critical graphs
      Kaemawichanurat, P.; Caccetta, Louis; Ananchuen, N. (2018)
      A vertex subset D of G is a dominating set of G if every vertex in V(G)-D is adjacent to a vertex in D. Moreover, a dominating set D of G is a connected dominating set if G[D] is connected. The minimum cardinality of a ...
    • Computational studies of some static and dynamic optimisation problems
      Lee, Wei R. (1999)
      In this thesis we shall investigate the numerical solutions to several important practical static and dynamic optimization problems in engineering and physics. The thesis is organized as follows.In Chapter 1 a general ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.