Show simple item record

dc.contributor.authorXu, F.
dc.contributor.authorZhang, Xinguang
dc.contributor.authorWu, Yong Hong
dc.contributor.authorLiu, Lishan
dc.date.accessioned2017-01-30T12:19:00Z
dc.date.available2017-01-30T12:19:00Z
dc.date.created2016-05-18T19:30:19Z
dc.date.issued2016
dc.identifier.citationXu, F. and Zhang, X. and Wu, Y.H. and Liu, L. 2016. The optimal convergence rates for the multi-dimensional compressible viscoelastic flows. ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik. 96 (12): pp. 1490-1504.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/20400
dc.identifier.doi10.1002/zamm.201500095
dc.description.abstract

In this paper, we are concerned with the multi-dimensional (N=3) compressible viscoelastic flows in the whole space. We prove the optimal convergence rates of strong solutions to the system for the initial data close to a stable equilibrium state in critical Besov spaces. Our main ideas are based on the low-high frequency decomposition and the smooth effect of dissipative operator.

dc.titleThe optimal convergence rates for the multi-dimensional compressible viscoelastic flows
dc.typeJournal Article
dcterms.source.issn0044-2267
dcterms.source.titleZAMM Zeitschrift fur Angewandte Mathematik und Mechanik
curtin.departmentDepartment of Mathematics and Statistics
curtin.accessStatusFulltext not available


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record