A first principles study of the distribution of iron in sphalerite
Access Status
Authors
Date
2010Type
Metadata
Show full item recordCitation
Source Title
ISSN
Faculty
School
Remarks
The link to the journal’s home page is: http://www.elsevier.com/wps/find/journaldescription.cws_home/212/description#description. Copyright © 2010 Elsevier B.V. All rights reserved
Collection
Abstract
Quantum mechanical techniques, based on density functional theory, have been used to study the distribution of iron impurities in sphalerite (ZnS) at compositions ranging from 3.125 to 12.5 mol% FeS. Our results show that iron is most easily incorporated by direct substitution onto the zinc site and that energies for solution reactions involving FeS are exothermic when the system is zinc deficient. Furthermore, there appears to be a small driving force for the formation of bound Fe? Fe pairs at low iron concentrations, though there is no particular preference found for larger clusters of iron. The influence of iron on the sphalerite cell parameter is shown to be sensitive to the presence of Fe-Fe pairs and to the degree of sample non-stoichiometry.
Related items
Showing items related by title, author, creator and subject.
-
Bekker, A.; Planavsky, N.; Rasmussen, Birger; Krapez, Bryan; Hofmann, A.; Slack, J.; Rouxel, O.; Konhauser, K. (2014)Iron formations are economically significant, iron- and silica-rich sedimentary rocks that are restricted to Precambrian successions. There are no known modern or Phanerozoic analogues for these deposits that are comparable ...
-
Holman, R.; Olynyk, John; Kulkarni, H.; Ferrari, P. (2017)Background: Parenteral iron is integral in the treatment of anaemia of chronic kidney disease patients on haemodialysis (HD). However, increased liver iron concentration (LIC) can result from such treatment, and this ...
-
Rasmussen, Birger; Fletcher, Ian; Bekker, Andrey; Muhling, Janet; Gregory, Courtney; Thorne, Alan (2012)Iron formations are chemical sedimentary rocks comprising layers of iron-rich and silica-rich minerals whose deposition requires anoxic and iron-rich (ferruginous) sea water. Their demise after the rise in atmospheric ...