Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    The use of MSSV pyrolysis to assist the molecular characterisation of aquatic natural organic matter

    Access Status
    Fulltext not available
    Authors
    Berwick, Lyndon
    Greenwood, Paul
    Smernik, R.
    Date
    2010
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Berwick, Lyndon and Greenwood, Paul F. and Smernik, Ronald J. 2010. The use of MSSV pyrolysis to assist the molecular characterisation of aquatic natural organic matter. Water Research. 44 (10): pp. 3039-3054.
    Source Title
    Water Research
    DOI
    10.1016/j.watres.2010.02.023
    ISSN
    0043-1354
    School
    Department of Applied Chemistry
    Remarks

    The link to the journal’s home page is: http://www.elsevier.com/wps/find/journaldescription.cws_home/309/description#description. Copyright © 2010 Elsevier B.V. All rights reserved

    URI
    http://hdl.handle.net/20.500.11937/20580
    Collection
    • Curtin Research Publications
    Abstract

    Microscale sealed vessel pyrolysis (MSSVpy) with online gas chromatography mass spectrometry (GC-MS) was used with several other established and complementary analytical methods to robustly characterize the structure of aquatic natural organic matter (NOM) and to practically assess the analytical value of MSSVpy. The NOM used in the study was from North Pine (NP) reservoir, which is one of the major source waters supplying Brisbane, the capital city of the Australian state of Queensland. The reservoir has moderate dissolved organic carbon (DOC; 5 mg L-1) levels and is impacted by algae which periodically occur in bloom proportions. The hydrophobic (HPO; 65% initial DOG) and transphilic (TPI; 12%) fractions showed H/C values <1, low UVabs and low aryl-C measured by NMR which are all indicative of low aromaticity. MSSVpy produced distinctly higher product concentrations than traditional flash pyrolysis and the molecular profile of the HPO and TPI fractions revealed by MSSVpy was correlated with the other analytical data to help establish their structural relevance.Prolific distributions of alkyl substituted aromatic (e.g., benzenes, naphthalenes) and hydroaromatic (e.g., tetralins) products detected in the HPO fraction were attributed to the aromatisation of terpanes and other aliphatic compounds from algal, and possibly also plant sources. Alkyl phenols also detected in HPO in high abundance, are probably from algal biopolymers, but may also reflect a contribution from non-methoxylated lignin units of catchment grasses. There was no analytical evidence of the dihydroxy or methoxy aromatic structures typical of wood lignin or tannin. N-organic pyrolysates (e.g., alkyl pyrroles, pyridines, indoles) of diagenetically altered proteins were concentrated in the TPI fraction. The quantitative importance of the N-organic moiety of the TPI fraction was corroborated by a low C/N ratio and distinctive amide and amine signals detected by C-13 NMR and FTIR. This integrated study demonstrates that the qualitative speciation provided by MSSVpy can make a significant contribution to the structural characterisation and source recognition of aquatic NOM

    Related items

    Showing items related by title, author, creator and subject.

    • Characterisation of aquatic natural organic matter by micro-scale sealed vessel pyrolysis
      Berwick, Lyndon (2009)
      The analytical capacity of MSSV pyrolysis has been used to extend the structural characterisation of aquatic natural organic matter (NOM). NOM can contribute to various potable water issues and is present in high ...
    • Analytical pyrolysis for determining the molecular composition of contemporary monosulfidic black ooze.
      Lockhart, Robert; Berwick, Lyndon; Greenwood, Paul; Grice, Kliti; Kraal, P.; Bush, R. (2013)
      On-line flash pyrolysis, micro-scale sealed vessel (MSSV) pyrolysis and catalytic hydropyrolysis (HyPy) were used to characterise the insoluble, macromolecular organic component of monosulfidic black oozes (MBO) which ...
    • Molecular characterisation of the dissolved organic matter of wastewater effluents by MSSV pyrolysis GC–MS and search for source markers
      Greenwood, Paul; Berwick, Lyndon; Croue, J. (2012)
      Microscale sealed vessel pyrolysis (MSSVpy) was used to characterise the hydrophobic (HPO) and colloid (COL) fractions of dissolved organic matter (DOM) from the effluents (EFFs) of two waste water treatment plants (WWTPs) ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.