Structural health monitoring of an asymmetrical SMA reinforced composite using embedded FBG sensors
Access Status
Authors
Date
2013Type
Metadata
Show full item recordCitation
Source Title
ISSN
Remarks
This is an author-created, un-copy edited version of an article accepted for publication in Smart Materials and Structures. The publisher is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at http://doi.org/10.1088/0964-1726/22/12/125015
Collection
Abstract
Embedded actuator and sensor technology provides accurate structural health monitoring and proper structural response of a structure at any harsh servicing situation. This paper describes the fabrication of a smart composite by embedding shape memory alloy (SMA) wires and fibre Bragg grating (FBG) sensors into a glass fabric reinforced polymeric composite. Mechanical performances of the composite under martensitic and austenitic stages of the SMA wires were studied, and its natural frequencies were also measured accordingly. The result shows that the shift of the natural frequency arises from temperature change, thus changing the mechanical properties of the SMA wires. The changes of strain, stress, curvature and damping ratio were predicted from an asymmetrical lamination model. It has found that this model demonstrates certain attractive effects including the mechanical properties, the change of shape and the natural frequency upon activation of the SMA wires.
Related items
Showing items related by title, author, creator and subject.
-
Li, Chao (2012)The purpose of this dissertation was to synthesize and evaluate porous poly(2- hydroxyethyl methacrylate) (PHEMA) and PHEMA composite hydrogels containing various concentrations of titanium dioxide (TiO2) nanoparticles, ...
-
Alamri, Hatem Rashed (2012)In recent years, cellulose fibre-reinforced polymer composites have been gaining a great attention in several engineering applications due to their desirable properties, which include low density, low cost, renewability ...
-
Cui, Yanqiang; Hao, Hong; Li, Jun ; Chen, Wensu ; Zhang, Xihong (2022)In this study, two new types of geopolymer composite lightweight sandwich panels are developed for prefabricated buildings. The first one has Fiber-reinforced Geopolymer (FRG) composite skin layers and polyurethane (PUR) ...