Application of modified Maxwell-Stefan equation for separation of aqueous phenol by pervaporation
Access Status
Authors
Date
2012Type
Metadata
Show full item recordCitation
Source Title
Additional URLs
ISSN
School
Collection
Abstract
Pervaporation has the potential to be an alternative to the other traditional separation processes such as distillation, adsorption, reverse osmosis and extraction. This study investigates the separation of phenol from water using a polyurethane membrane by pervaporation by applying the modified Maxwell-Stephen model. The modified Maxwell-Stefan model takes into account the non-ideal multi-component solubility effect, nonideal diffusivity of all permeating components, concentration dependent density of the membrane and diffusion coupling to predict various fluxes. Four cases has been developed to investigate the process parameters effects on the flux and weight fraction of phenol in the permeate values namely feed concentration, membrane thickness, operating temperature and operating downstream pressure. The model could describe semi-quantitatively the performance of the pervaporation membrane for the given system as a very good agreement between the observed and theoretical fluxes was observed.
Related items
Showing items related by title, author, creator and subject.
-
Wang, X.; Zou, Y.; Meng, B.; Tan, X.; Wang, Shaobin; Liu, Shaomin (2018)Pd membranes can be applied to many hydrogenation or dehydrogenation reactions for chemical production. Such membrane reactors can realize the simultaneous separation and reaction in one unit. However, the Pd membrane is ...
-
Berwick, Lyndon (2009)The analytical capacity of MSSV pyrolysis has been used to extend the structural characterisation of aquatic natural organic matter (NOM). NOM can contribute to various potable water issues and is present in high ...
-
Rajaeian, Babak (2012)Thin film composite (TFC) membranes have long been used by many large-scale applications (i.e., water and wastewater treatment). Recently, conventional polymeric TFC membranes are facing with short longevity due to high ...