Show simple item record

dc.contributor.authorAgostino, Mark
dc.contributor.authorSandrin, M.
dc.contributor.authorThompson, P.
dc.contributor.authorYuriev, E.
dc.contributor.authorRamsland, Paul
dc.date.accessioned2017-01-30T12:22:00Z
dc.date.available2017-01-30T12:22:00Z
dc.date.created2016-09-12T08:36:51Z
dc.date.issued2009
dc.identifier.citationAgostino, M. and Sandrin, M. and Thompson, P. and Yuriev, E. and Ramsland, P. 2009. In silico analysis of antibody-carbohydrate interactions and its application to xenoreactive antibodies. Molecular Immunology. 47 (2-3): pp. 233-246.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/20913
dc.identifier.doi10.1016/j.molimm.2009.09.031
dc.description.abstract

Antibody-carbohydrate interactions play central roles in stimulating adverse immune reactions. The most familiar example of such a process is the reaction observed in ABO-incompatible blood transfusion and organ transplantation. The ABO blood groups are defined by the presence of specific carbohydrates expressed on the surface of red blood cells. Preformed antibodies in the incompatible recipient (i.e., different blood groups) recognize cells exhibiting host-incompatible ABO system antigens and proceed to initiate lysis of the incompatible cells. Pig-to-human xenotransplantation presents a similar immunological barrier. Antibodies present in humans recognize carbohydrate antigens on the surface of pig organs as foreign and proceed to initiate hyperacute xenograft rejection. The major carbohydrate xenoantigens all bear terminal Gala(1,3)Gal epitopes (or aGal). In this study, we have developed and validated a site mapping technique to investigate protein-ligand recognition and applied it to antibody-carbohydrate systems. This site mapping technique involves the use of molecular docking to generate a series of antibody-carbohydrate complexes, followed by analysis of the hydrogen bonding and van der Waals interactions occurring in each complex. The technique was validated by application to a series of antibody-carbohydrate crystal structures. In each case, the majority of interactions made in the crystal structure complex were able to be reproduced. The technique was then applied to investigate xenoantigen recognition by a panel of monoclonal anti-aGal antibodies. The results indicate that there is a significant overlap of the antibody regions engaging the xenoantigens across the panel. Likewise, similar regions of the xenoantigens interact with the antibodies. © 2009 Elsevier Ltd. All rights reserved.

dc.titleIn silico analysis of antibody-carbohydrate interactions and its application to xenoreactive antibodies
dc.typeJournal Article
dcterms.source.volume47
dcterms.source.number2-3
dcterms.source.startPage233
dcterms.source.endPage246
dcterms.source.issn0161-5890
dcterms.source.titleMolecular Immunology
curtin.departmentSchool of Biomedical Sciences
curtin.accessStatusFulltext not available


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record