Show simple item record

dc.contributor.authorRen, Z.
dc.contributor.authorXu, C.
dc.contributor.authorLin, Qun
dc.contributor.authorLoxton, Ryan
dc.date.accessioned2017-01-30T12:22:40Z
dc.date.available2017-01-30T12:22:40Z
dc.date.created2016-06-21T19:30:16Z
dc.date.issued2016
dc.identifier.citationRen, Z. and Xu, C. and Lin, Q. and Loxton, R. 2016. A Gradient-based Kernel Optimization Approach for Parabolic Distributed Parameter Control Systems. Pacific Journal of Optimization. 12 (2): pp. 263-287.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/21022
dc.description.abstract

This paper proposes a new gradient-based optimization approach for designing optimal feedback kernels for parabolic distributed parameter systems with boundary control. Unlike traditional kernel optimization methods for parabolic systems, our new method does not require solving non-standard Riccati-type or Klein-Gorden-type partial differential equations (PDEs). Instead, the feedback kernel is parameterized as a second-order polynomial whose coefficients are decision variables to be tuned via gradient-based dynamic optimization, where the gradient of the system cost functional (which penalizes both kernel and output magnitude) is computed by solving a so-called “costate" PDE in standard form. Special constraints are imposed on the kernel coefficients to ensure that, under mild conditions, the optimized kernel yields closed-loop stability. Numerical simulations demonstrate the effectiveness of the proposed approach.

dc.publisherYokohama Publishers
dc.relation.urihttp://www.ybook.co.jp/online2/oppjo/vol12/p263.html
dc.titleA Gradient-based Kernel Optimization Approach for Parabolic Distributed Parameter Control Systems
dc.typeJournal Article
dcterms.source.volume2
dcterms.source.number2
dcterms.source.startPage263
dcterms.source.endPage287
dcterms.source.issn1348-9151
dcterms.source.titlePacific Journal of Optimization
curtin.departmentDepartment of Mathematics and Statistics
curtin.accessStatusOpen access via publisher


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record