Show simple item record

dc.contributor.authorWong, S.
dc.contributor.authorVo, Ba Tuong
dc.contributor.authorPapi, F.
dc.date.accessioned2017-01-30T12:23:43Z
dc.date.available2017-01-30T12:23:43Z
dc.date.created2014-07-02T20:00:25Z
dc.date.issued2014
dc.identifier.citationWong, S. and Vo, B.T. and Papi, F. 2014. Bernoulli Forward-Backward Smoothing for Track-Before-Detect. IEEE Signal Processing Letters. 21 (6): pp. 727-731.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/21184
dc.identifier.doi10.1109/LSP.2014.2310137
dc.description.abstract

Track-before-detect (TBD) refers to an alternative approach to tracking which utilizes the full sensor information rather than detections obtained from thresholding. In this letter we investigate whether forward-backward smoothing for TBD can increase performance. We propose a novel algorithm based on the random finite set framework which incorporates the TBD sensor model with multi-scan information. The algorithm is tested on a typical scenario which confirms improved tracking.

dc.publisherInstitute of Electrical and Electronics Engineers
dc.subjecttracking
dc.subjectfiltering
dc.subjectestimation
dc.subjectDetection
dc.subjectsmoothing
dc.titleBernouli Forward-Backward Smoothing for Track-Before-Detect
dc.typeJournal Article
dcterms.source.volume21
dcterms.source.number6
dcterms.source.startPage727
dcterms.source.endPage731
dcterms.source.issn1070-9908
dcterms.source.titleIEEE Signal Processing Letters
curtin.department
curtin.accessStatusFulltext not available


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record