Semivectorial bilevel convex optimal control problems: Existence results
Access Status
Authors
Date
2012Collection
Type
Metadata
Show full item recordAbstract
We consider a bilevel optimal control problem where the upper level, to be solved by a leader, is a scalar optimal control problem, and the lower level, to be solved by several followers, is a multiobjective convex optimal control problem. We deal with the socalled optimistic case, when the followers are assumed to choose a best choice for the leader among their best responses, as well with the socalled pessimistic case, when the best response chosen by the followers can be the worst choice for the leader. First, the strategy of the leader fixed, we state a relationship between the (weakly or properly) efficient set of the follower's multicriteria problem and the solution set of the problem scalarized via a convex combination of objectives through a vector of parameters (weights). Then we establish that (i) the solution of the scalarized (parametric) problem for any given parameter vector is unique and (weakly or properly) efficient and (ii) for each solution in the (weakly or properly) efficient set, there exists at least one corresponding parameter vector for the scalarized problem yielding the same solution. Therefore, the set of all parametric solutions (obtained by solving the scalarized problem) is equal to the efficient set. Thus we are able to rewrite the optimistic and pessimistic semivectorial bilevel control problems as bilevel problems where the lower level is a scalar optimization problem which always admits a unique solution. Finally, we present sufficient conditions on the data for existence of solutions to both the optimistic and pessimistic optimal control problems. Copyright © by SIAM.
Citation
Source Title
Department
Related items
Showing items related by title, author, creator and subject.

Bonnel, Henri; Morgan, J. (2013)We present optimality conditions for bilevel optimal control problems where the upper level is a scalar optimal control problem to be solved by a leader and the lower level is a multiobjective convex optimal control problem ...

Bonnel, Henri; Todjihoundé, L.; Udriste, C. (2015)© 2015, Springer Science+Business Media New York. In this paper, we deal with the semivectorial bilevel problem in the Riemannian setting. The upper level is a scalar optimization problem to be solved by the leader, and ...

Woon, Siew Fang (2009)Optimal control problems arise in many applications, such as in economics, finance, process engineering, and robotics. Some optimal control problems involve a control which takes values from a discrete set. These problems ...