Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Damage evaluation of the steel tubular column subjected to explosion and post-explosion fire condition

    Access Status
    Fulltext not available
    Authors
    Ding, Y.
    Wang, M.
    Li, Z.
    Hao, Hong
    Date
    2013
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Ding, Y. and Wang, M. and Li, Z. and Hao, H. 2013. Damage evaluation of the steel tubular column subjected to explosion and post-explosion fire condition. Engineering Structures. 55: pp. 44-55.
    Source Title
    Engineering Structures
    DOI
    10.1016/j.engstruct.2012.01.013
    ISSN
    0141-0296
    URI
    http://hdl.handle.net/20.500.11937/21413
    Collection
    • Curtin Research Publications
    Abstract

    Fires following explosion are considered one of the most serious secondary disasters in the blast events, which are frequently occurring in the terrorist attacks and other blast accidents. In the recent decades, a significant amount of research work has been carried out to study the structural response under blast loads, and it is found that due to the superior mechanical properties of steel material, steel structures are adequate to withstand a medium-scaled blast loading. However, since the strength of steel is sensitive to temperature, the post-explosion fire action should be involved in the evaluation of structural damage in the blast events. This paper is devoted to introduce a numerical method for predicting the integrative damage of steel tubular column subjected to blast load and the following fire action. The damage caused by blast load would significantly reduce the fire resistance of steel column, which includes two aspects: mechanical damage and geometrical damage. In order to describe the mechanical damage under the blast loading, a damage scalar is defined in the constitutive model, and it is used to represent the reduction of material strength. The geometrical deformation induced by blast load is treated as the initial condition in the fire analysis. Pressure-Impulse diagram is employed to describe the damage of the steel tubular column under blast loading. In the second step, fire analysis for the explosion-survived column is carried out. Obviously, the residual vertical capacity of steel column is related with the fire exposure time. In order to clarify the interaction between the explosion and the post-explosion fire action, a more inclusive function, characterized by three variables: pressure, impulse and fire exposure time, is presented in this paper, and it can be used to predict the residual capacity of the steel column subjected to blast load and exposed to fire for a specific time. In the last section, parametric studies are conducted to observe the effects of geometric size on the failure evolution of steel columns. The main objective of this research work is to provide guidance for assessing damage level of the steel tubular columns that have survived blast loading and expose to the following fire condition.

    Related items

    Showing items related by title, author, creator and subject.

    • Residual axial capacity of concrete-filled double-skin steel tube columns under close-in blast loading
      Li, Minghong; Xia, Mengtao; Zong, Zhouhong; Wu, Gang; Zhang, Xihong (2022)
      Concrete-filled double-skin steel tubes (CFDSTs) are comprised of two concentrically placed steel tubes with the annulus between the tubes filled with concrete. A number of researches have established the prospect of CFDST ...
    • Experimental and numerical study on the behaviour of CFDST columns subjected to close-in blast loading
      Li, M.; Zong, Z.; Hao, Hong; Zhang, Xihong; Lin, J.; Xie, G. (2019)
      The dynamic behaviour of concrete-filled double-skin steel tube (CFDST) columns under close-in blast loading was investigated using experimental and numerical approaches in the present study. Field test results on three ...
    • Reliability Analysis of RC Columns and Frame with FRP Strengthening Subjected to Explosive Loads
      Hao, Hong; Li, Z.; Shi, Y. (2016)
      Some structures, both military and civilian, might experience explosive loads during their service life. Owing to high uncertainties in blast load predictions and structural parameters, accurate assessment of the performances ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.