Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Sensing sulfur-containing gases using titanium and tin decorated zigzag graphene nanoribbons from first-principles

    228202_151491_PCCP.pdf (2.698Mb)
    Access Status
    Open access
    Authors
    Tawfik, S.
    Cui, X.
    Carter, Damien
    Ringer, S.
    Stampfl, C.
    Date
    2015
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Tawfik, S. and Cui, X. and Carter, D. and Ringer, S. and Stampfl, C. 2015. Sensing sulfur-containing gases using titanium and tin decorated zigzag graphene nanoribbons from first-principles. Physical Chemistry Chemical Physics. 17 (10): pp. 6925-6932.
    Source Title
    Physical Chemistry Chemical Physics
    DOI
    10.1039/c4cp05919k
    ISSN
    1463-9076
    School
    Nanochemistry Research Institute
    Remarks

    This open access article is distributed under the Creative Commons license http://creativecommons.org/licenses/by-nc/3.0/

    URI
    http://hdl.handle.net/20.500.11937/21618
    Collection
    • Curtin Research Publications
    Abstract

    Atom implantation in graphene or graphene nanoribbons offers a rich opportunity to tune the material structure and functional properties. In this study, zigzag graphene nanoribbons with Ti or Sn adatoms stabilised on a double carbon vacancy site are theoretically studied to investigate their sensitivity to sulfur-containing gases (H2S and SO2). Due to the abundance of oxygen in the atmosphere, we also consider the sensitivity of the structures in the presence of oxygen. Density functional theory calculations are performed to determine the adsorption geometry and energetics, and nonequilibrium Green's function method is employed to compute the current–voltage characteristics of the considered systems. Our results demonstrate the sensitivity of both Ti- and Sn-doped systems to H2S, and the mild sensitivity of Ti-doped sensor systems to SO2. The Ti-doped sensor structure exhibits sensitivity to H2S with or without oxidation, while oxidation of the Sn-doped sensor structure reduces its ability to adsorb H2S and SO2 molecules. Interestingly, oxygen dissociates on the Ti-doped sensor structure, but it does not affect the sensor's response to the H2S gas species. Oxidation prevents the dissociation of the H–S bond when H2S adsorbs on the Ti-doped structure, thus enhancing its reusability for this gas species. Our study suggests the potential of Ti- and Sn-doped graphene in selective gas sensing, irrespective of the sensing performance of the bulk oxides.

    Related items

    Showing items related by title, author, creator and subject.

    • Boron- and nitrogen-doped multi-wall carbon nanotubes for gas detection
      Adjizian, J.; Leghrib, R.; Koos, A.; Suarez-Martinez, Irene; Crossley, A.; Wagner, P.; Grobert, N.; Llobet, E.; Ewels, C. (2013)
      The response of pristine, nitrogen and boron doped carbon nanotube (CNT) sensors to NO2, CO, C2H4 and H2O at ppm concentrations was investigated at both room temperature and 150 °C. N-doped CNTs show the best sensitivity ...
    • Electrocatalytic oxidation of methanol on Pt catalyst supported on nitrogen-doped graphene induced by hydrazine reduction
      Zhao, Y.; Zhou, Y.; O'Hayre, R.; Shao, Zongping (2013)
      Hydrazine is often used to reduce graphene oxide (GO) to produce graphene. Recent observationssuggested that when hydrazine is used to reduce GO, the resulting reduced graphene actually contains certain amounts of nitrogen ...
    • Nitrogen-Doped Nanoporous Carbon/Graphene Nano-Sandwiches: Synthesis and Application for Efficient Oxygen Reduction
      Wei, J.; Hu, Y.; Liang, Y.; Kong, B.; Zhang, J.; Song, J.; Bao, Q.; Simon, G.; Jiang, San Ping; Wang, H. (2015)
      A zeolitic-imidazolate-framework (ZIF) nanocrystal layer-protected carbonization route is developed to prepare N-doped nanoporous carbon/graphene nano-sandwiches. The ZIF/graphene oxide/ZIF sandwich-like structure with ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.