Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Impact of volatile boron species on the microstructure and performance of nano-structured (Gd,Ce)O2 infiltrated (La,Sr)MnO3 cathodes of solid oxide fuel cells

    Access Status
    Fulltext not available
    Authors
    Chen, Kongfa
    Ai, Na
    Lievens, Caroline
    Love, J.
    Jiang, San Ping
    Date
    2012
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Chen, K. and Ai, N. and Lievens, C. and Love, J. and Jiang, S.P. 2012. Impact of volatile boron species on the microstructure and performance of nano-structured (Gd,Ce)O2 infiltrated (La,Sr)MnO3 cathodes of solid oxide fuel cells. Electrochemistry Communications. 23: pp. 129-132.
    Source Title
    Electrochemistry Communications
    DOI
    10.1016/j.elecom.2012.07.025
    ISSN
    1388-2481
    School
    Department of Chemical Engineering
    URI
    http://hdl.handle.net/20.500.11937/21704
    Collection
    • Curtin Research Publications
    Abstract

    The impact of volatile boron species on the microstructure and performance of nano-structured (Gd,Ce)O2-infiltrated (La,Sr)MnO3 (GDC-LSM) cathodes of solid oxide fuel cells is studied for the first time. The results indicate that after the heat treatment of the cathodes at 800 °C in air for 30 days in the presence of borosilicate glass significant grain growth and agglomeration of infiltrated GDC nanoparticles are observed. The electrode polarization resistance of the GDC–LSM cathode after the heat treatment in the presence of glass is 3.15 Ω cm2 at 800 °C, substantially higher than 0.17 Ω cm2 of the cathode heat-treated in the absence of glass under identical conditions. ICP-OES analysis shows the deposition of boron species in the cathodes after sintering in the presence of glass powder. The results demonstrate the significant detrimental effect of volatile boron species on the microstructure and activity of nano-structured GDC–LSM cathode.

    Related items

    Showing items related by title, author, creator and subject.

    • Effect of volatile boron species on the electrocatalytic activity of cathodes of solid oxide fuel cells I. (La,Sr)MnO3 based electrodes
      Chen, Kongfa; Ai, Na; Zhao, L.; Jiang, San Ping (2013)
      The effect of volatile boron species on the microstructure and electrocatalytic activity of conventional (La,Sr)MnO3 (LSM) and nano-structured LSM infiltrated Y2O3-ZrO2 (LSM-YSZ) cathodes of solid oxide fuel cell (SOFC) ...
    • Effect of volatile boron species on the electrocatalytic activity of cathodes of solid oxide fuel cells
      Chen, Kongfa; Ai, Na; Zhao, L.; Jiang, San Ping (2013)
      The effect of volatile boron species on the electrocatalytic activity, microstructure and phase stability of conventional La0.6Sr0.4Co0.2Fe0.8O3 (LSCF) and nano-structured LSCF infiltrated Gd0.1Ce0.9O1.95 (LSCF-GDC) ...
    • A Fundamental Study of Boron Deposition and Poisoning of La0.8Sr0.2MnO3 Cathode of Solid Oxide Fuel Cells under Accelerated Conditions
      Chen, K.; Liu, S.; Guagliardo, P.; Kilburn, M.; Koyama, M.; Jiang, San Ping (2015)
      Borosilicate glass and glass-ceramics are the most common sealant materials for planar solid oxide fuel cells (SOFCs). This study focuses on the fundamentals of deposition and poisoning of volatile boron species from the ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.