Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Enhancing performance of active power filter with fuzzy logic controller using adaptive hysteresis direct current control

    Access Status
    Fulltext not available
    Authors
    Fereidouni, Alireza
    Masoum, Mohammad Sherkat
    Date
    2014
    Type
    Conference Paper
    
    Metadata
    Show full item record
    Citation
    Fereidouni, A. and Masoum, M.S. 2014. Enhancing performance of active power filter with fuzzy logic controller using adaptive hysteresis direct current control, in Australasian Universities Power Engineering Conference, AUPEC 2014, Sep 28 2014. Perth, Australia: IEEE.
    Source Title
    Power Engineering Conference (AUPEC), 2014 Australasian Universities, IEEE Xplore
    Source Conference
    Australasian Universities Power Engineering Conference, AUPEC 2014
    DOI
    10.1109/AUPEC.2014.6966500
    School
    Department of Electrical and Computer Engineering
    URI
    http://hdl.handle.net/20.500.11937/21781
    Collection
    • Curtin Research Publications
    Abstract

    Active power filters (APFs) are widely accepted power electronic devices for compensating harmonic currents produced by nonlinear loads. The conventional technology used for APFs is a proportional-plus-integral (PI) controller. However, both the conventional approaches for determining the PI coefficients and also its structure may not provide satisfactory results under transient operating conditions such as a sudden change of load. Therefore, this paper proposes a proportional-integral-derivative fuzzy logic controller (PID-FLC) to improve the steady-state and transient performances of the conventional APF controllers. First, particle swarm optimization (PSO) is utilized to determine the optimal coefficients of the proposed PID-FLC. Then, the direct current control approach is used to generate the reference harmonic signals from the non-sinusoidal load current while an adaptive hysteresis-based current control is selected to control the compensating currents. Simulation results for a power system connected to a nonlinear load are generated to investigate the dynamic performance of APF equipped with the conventional-PI (C-PI), optimized-PI (OPT-PI), optimized-PID (OPT-PID) and optimized-PID-FLC (OPT-PID-FLC) controllers using MATLAB/SIMULINK software.

    Related items

    Showing items related by title, author, creator and subject.

    • Evaluation of monorail haulage systems in metalliferous underground mining
      Besa, Bunda (2010)
      The decline is a major excavation in metalliferous mining since it provides the main means of access to the underground and serves as a haulage route for underground trucks. However, conventional mining of the decline to ...
    • Application of SMES Unit to improve the performance of doubly fed induction generator based WECS
      Yunus, A. M. Shiddiq (2012)
      Due to the rising demand of energy over several decades, conventional energy resources have been continuously and drastically explored all around the world. As a result, global warming is inevitable due to the massive ...
    • Multi-function power electronic interface for hybrid mini-grid systems
      Darbyshire, James (2010)
      In the past five years, global interest regarding the development of renewable energy technologies has significantly increased. The conventional electric power generation methods sourced from fossil fuels is now problematic, ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.