Sedimentation history of the Paleoproterozoic Singhbhum Group of rocks, eastern India and its implications
Access Status
Authors
Date
2016Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
This paper reviews the sedimentological, geochemical and stratigraphic characteristics of the Paleoproterozoic Chaibasa and Dhalbhum Formations (the Singhbhum Group) of eastern India and presents a comparative study with other Paleoproterozoic lithostratigraphic units of India. Both the formations are enitrely siliciclastic and deformed and metamorphosed, genererally at greenschist to upper amphibolite facies. The older Chaibasa Formation consists of sandstone, shale and sandstone-shale interbanded (heterolithic) facies. It conformably overlies the Late Archean-Paleoproterozoic Dhanjori Formation of terrestrial (alluvial fan-fluvial) origin. The Lower Chaibasa Member formed in a marine setting; the shale and heterolithic facies formed in a continental shelf setting below and above the storm wave base, respectively. The sandstone facies formed in a subtidal setting during sea level fall. In contrast, the Upper Chaibasa Member formed in a shallow-marine setting; both the shale and heterolithic facies formed above the storm wave base.In significant contrast, the overlying Dhalbhum Formation is dominated by finer clastics with much lower proportion of sandstones. The base of the terrestrial Dhalbhum Formation is a sequence boundary (unconformity). Sedimentary facies analysis clearly shows two broad facies association of terrestrial origin (fluvial and aeolian). The aeolian facies association overlies the fluvial facies association. The Dhalbhum sandstones show typical REE pattern of quartz dilution with lower concentrations compared to the mudstones. The Dhalbhum finer clastics mimic typical REE patterns resembling abundances in the continental crust. Rare earth element plots display a good match with Post-Archean Australian Shales (PAAS) including similar concentrations, steep negative slope for LREEs, negative Eu anomaly, and nearly flat HREES. The Singhbhum Paleoproterozoic succession is devoid of both chemical sediments and Paleoproterozoic glacial deposits in contrast to neighboring cratons.
Related items
Showing items related by title, author, creator and subject.
-
De, S.; Mazumder, Rajat; Ohta, T.; Hegner, E.; Yamanda, K.; Bhattacharyya, T.; Chiarenzelli, J.; Altermann, W.; Arima, M. (2015)In significant contrast to other cratonic blocks of India, the Singhbhum cratonic successions record continuous depositional record from the Palaeoarchaean to Mesoproterozoic. Although the sedimentary facies characteristics ...
-
De, S.; Mazumder, Rajat; Ohta, T.; Hegner, E.; Yamada, K.; Bhattacharyya, T.; Chiarenzelli, J. (2015)In significant contrast to other cratonic blocks of India, the Singhbhum cratonic successions record continuous depositional record from the Palaeoarchaean to Mesoproterozoic. Although the sedimentary facies characteristics ...
-
Kadkhodaie-Ilkhchi, R.; Kadkhodaie, A.; Rezaee, M. Reza; Mehdipour, V. (2019)Tight sandstones of the late Permian Willespie Formation constitute an important reservoir rock in the Whicher Range gas field of the Perth Basin. The sandstones under the effect of sedimentary conditions and diagenesis ...