Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    The Mesoproterozoic thermal evolution of the Musgrave Province in central Australia - Plume vs. the geological record

    Access Status
    Fulltext not available
    Authors
    Smithies, R.
    Kirkland, Chris
    Korhonen, F.
    Aitken, A.
    Howard, H.
    Maier, W.
    Wingate, M.
    Quentin de Gromard, R.
    Gessner, K.
    Date
    2015
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Smithies, R. and Kirkland, C. and Korhonen, F. and Aitken, A. and Howard, H. and Maier, W. and Wingate, M. et al. 2015. The Mesoproterozoic thermal evolution of the Musgrave Province in central Australia - Plume vs. the geological record. Gondwana Research. 27 (4): pp. 1419-1429.
    Source Title
    Gondwana Research
    DOI
    10.1016/j.gr.2013.12.014
    ISSN
    1342-937X
    School
    Department of Applied Geology
    URI
    http://hdl.handle.net/20.500.11937/22064
    Collection
    • Curtin Research Publications
    Abstract

    The >1090 to <1040Ma Giles Event added extraordinary volumes of mantle derived magma to the crust of the Musgrave region of central Australia. This included one of Earth's largest mafic intrusions - the Mantamaru intrusion - and the c. 1075Ma formation of the Warakurna large igneous province, which spread dolerite intrusions across ~1.5millionkm<sup>2</sup> of western and central Australia. It also included one of the most voluminous additions of juvenile felsic material to Earth's crust, with the development of one of the world's longest-lived rhyolitic centres, including the Talbot supervolcano. Previous suggestions that the event was the result of a deep mantle plume cannot adequately account for the >50m.y. duration of mantle derived magmatism or the fact that isolated localities such as the Talbot Sub-basin preserve the entire magmatic record, with no discernible regional age progressive spatial trend. For at least 100m.y. before the Giles Event, the Musgrave region experienced high- to ultra-high crustal temperatures - possibly as an ultra-hot orogen born from a c. 1300Ma back-arc. Granitic magmatism prior to the Giles Event also involved a significant mantle-derived component and was accompanied by mid-crustal ultra-high temperature (>1000°C) metamorphism reflecting a thin and weak lithosphere. This magmatism also resulted in a mid-crustal (~25km deep) layer greatly enriched in radiogenic heat producing elements that strongly augmented the already extreme crustal geotherms over a prolonged period. The Giles Event may have been triggered when this regional Musgrave thermal anomaly was displaced, and again significantly destabilised, along the Mundrabilla Shear Zone - a continent-scale structure that juxtaposed the Musgrave Province against the easterly extension of the Capricorn Orogen where pre-existing orogen-scale structures were in extension. These orogen-scale structures funnelled the magmas that produced the Warakurna large igneous province and the intersection of the Musgrave thermal anomaly and the Mundrabilla Shear Zone was the site of the Talbot supervolcano. Although previously thought to be a result of a deep mantle plume, the Giles Event was more likely the product of intra-plate tectonic processes involving an anomalous and prolonged thermal pre-history, a magma-focussing lithospheric architecture and large-scale tectonic movements.

    Related items

    Showing items related by title, author, creator and subject.

    • The burning heart - The Proterozoic geology and geological evolution of the west Musgrave Region, central Australia
      Howard, H.; Smithies, R.; Kirkland, Chris; Kelsey, D.; Aitken, A.; Wingate, M.; Quentin de Gromard, R.; Spaggiari, C.; Maier, W. (2015)
      The Musgrave Province is one of the most geodynamically significant of Australia's Proterozoic orogenic belts, lying at the intersection of the continent's three cratonic elements - the West, North and South Australian ...
    • Constraints and deception in the isotopic record; The crustal evolution of the west Musgrave Province, central Australia
      Kirkland, Chris; Smithies, R.; Woodhouse, A.; Howard, H.; Wingate, M.; Belousova, E.; Cliff, J.; Murphy, R.; Spaggiari, C. (2013)
      The Hf and Nd isotopic evolution of the Musgrave Province, central Australia, is used to constrain the timing of crust formation and lithospheric organisation of Proterozoic Australia. The dataset from this region challenges ...
    • Thermal history and differential exhumation across the Eastern Musgrave Province, South Australia: Insights from low-temperature thermochronology
      Glorie, S.; Agostino, K.; Dutch, R.; Pawley, M.; Hall, J.; Danisik, Martin; Evans, Noreen; Collins, A. (2017)
      © 2017 Elsevier B.V.Multi–method geo- and thermochronological data obtained for Palaeo- and Mesoproterozoic granitoids traversing the main structural architecture of the eastern Musgrave Province within South Australia ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.