Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Theses
    • View Item
    • espace Home
    • espace
    • Curtin Theses
    • View Item

    Extremal problems and designs on finite sets.

    9909_Roberts I 1999.pdf (3.760Mb)
    Access Status
    Open access
    Authors
    Roberts, Ian T.
    Date
    1999
    Type
    Thesis
    Award
    PhD
    
    Metadata
    Show full item record
    School
    School of Mathematics and Statistics
    URI
    http://hdl.handle.net/20.500.11937/221
    Collection
    • Curtin Theses
    Abstract

    This thesis considers three related structures on finite sets and outstanding conjectures on two of them. Several new problems and conjectures are stated.A union-closed collection of sets is a collection of sets which contains the union of each pair of sets in the collection. A completely separating system of sets is a collection of sets in which for each pair of elements of the universal set, there exists a set in the collection which contains the first element but not the second, and another set which contains the second element but not the first. An antichain (Sperner Family) is a collection of distinct sets in which no set is a subset of another set in the collection. The size of an antichain is the number of sets in the collection. The volume of an antichain is the sum of the cardinalities of the sets in the collection. A flat antichain is an antichain in which the difference in cardinality between any two sets in the antichain is at most one.The two outstanding conjectures considered are:The union-closed sets conjecture - In any union-closed collection of non-empty sets there is an element of the universal set in at least half of the sets in the collection;The flat antichain conjecture - Given an antichain with size s and volume V, there is a flat antichain with the same size and volume.Union-closed collections are considered in two ways. Improvements are made to the previously known bounds concerning the minimum size of a counterexample to the union-closed sets conjecture. Results are derived on the minimum size of a union-closed collection generated by a given number of k-sets. An ordering on sets is described, called order R and it is conjectured that choosing a collection of m k-sets in order R will always minimise the size of the union-closed collection generated by m k-sets.Several variants on completely separating systems of sets are considered. A determination is made of the minimum size of such collections, subject to various constraints on the collections. In particular, for each n and k, exact values or bounds are determined for the minimum size of completely separating systems on a n-set in which each set has cardinality k.Antichains are considered in their relationship to completely separating systems and the flat antichain conjecture is shown to be true in certain cases.

    Related items

    Showing items related by title, author, creator and subject.

    • Size exclusion chromatography as a tool for natural organic matter characterisation in drinking water treatment
      Allpike, Bradley (2008)
      Natural organic matter (NOM), ubiquitous in natural water sources, is generated by biogeochemical processes in both the water body and in the surrounding watershed, as well as from the contribution of organic compounds ...
    • Burden of disease and benefits of exercise in fixed airway obstruction asthma
      Turner, Sian Elizabeth (2009)
      Background and research questions. The characterization of chronic persistent asthma in an older adult population is not well defined. This is due to the difficulties in separating the diagnosis of asthma from that of ...
    • Emission of inorganic particulate matter during the combustion of biomass, biochar and Collie coal
      Gao, Xiangpeng (2011)
      Coal is an important part of Australia's energy mix and is expected to continue to play an essential role in supplying cheap and secure energy for powering the Australian economy in the foreseeable future. However, ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.