Soft computing techniques for product filtering in E-commerce personalisation: A comparison study
Access Status
Authors
Date
2009Type
Metadata
Show full item recordCitation
Source Title
ISBN
School
Collection
Abstract
In this paper, we compare two soft computing methods used for product filtering in web personalisation for E-commerce. Due to the diversely behaving nature, and the complexity to model the customers' behaviour using market research methodologies, it is difficult to build a universal model relating the purchasing behaviour mathematical in E-commerce. For this reason, soft computing techniques may be considered as more appropriate in such case. In this study, we have investigated and compared an artificial neural network (ANN) and a fuzzy based method on a particular simulated data set. Initial results indicated that the fuzzy method could be a better choice as there are means to improve the results and human users may understand and modify the model. ©2009 IEEE.