Three-dimensional brittle shear fracturing by tensile crack interaction
Access Status
Authors
Date
2006Type
Metadata
Show full item recordCitation
Source Title
ISSN
Collection
Abstract
Faults in brittle rock are shear fractures formed through the interaction and coalescence of many tensile microcracks. The geometry of these microcracks and their surrounding elastic stress fields control the orientation of the final shear fracture surfaces. The classic Coulomb–Mohr failure criterion predicts the development of two conjugate (bimodal) shear planes that are inclined at an acute angle to the axis of maximum compressive stress. This criterion, however, is incapable of explaining the three-dimensional polymodal fault patterns that are widely observed in rocks. Here we show that the elastic stress around tensile microcracks in three dimensions promotes a mutual interaction that produces brittle shear planes oriented obliquely to the remote principal stresses, and can therefore account for observed polymodal fault patterns. Our microcrack interaction model is based on the three-dimensional solution of Eshelby, unlike previous models that employed two-dimensional approximations. Our model predicts that shear fractures formed by the coalescence of interacting mode I cracks will be inclined at a maximum of 26° to the axes of remote maximum and intermediate compression. An improved understanding of brittle shear failure in three dimensions has important implications for earthquake seismology and rock-mass stability, as well as fluid migration in fractured rocks.
Related items
Showing items related by title, author, creator and subject.
-
Healy, David; Jones, R.; Holdsworth, R. (2006)Existing models of brittle shear failure are unable to account for three-dimensional deformation involving the development of polymodal sets of fractures. Motivated by field observations of contemporaneous arrays of ...
-
Tripp, Gerard I. (2000)Late-Archaean deformation at Ora Banda 69km northwest of Kalgoorlie, Western Australia, resulted in upright folds (D2), ductile shear zones (D3), and a regional-scale brittle-ductile fault network (D4). Early low-angle ...
-
Sharifzadeh M, Z.; Feng, X-T; Zhang, X.; Qiao, L.; Zhang, Y. (2017)As a consequence of rapid growing trend of resource extraction in world, depth of excavations for resource exploitation increases. Eventually excavations faces with transition from low stress to high stress condition. In ...