Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    The interpretation of polycrystalline coherent inelastic neutron scattering from aluminium

    194260_99908_The_interpretation_of_polycrystalline_coherent_inelastic_neutron_scattering_from_aluminium_2013.pdf (2.118Mb)
    Access Status
    Open access
    Authors
    Roach, D.
    Ross, K.
    Gale, Julian
    Taylor, J.
    Date
    2013
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Roach, Daniel L. and Ross, D. Keith and Gale, Julian D. and Taylor, Jon W. 2013. The interpretation of polycrystalline coherent inelastic neutron scattering from aluminium. Journal of Applied Crystallography. 46 (6): pp. 1755-1770.
    Source Title
    Journal of Applied Crystallography
    DOI
    10.1107/S0021889813023728
    ISSN
    0021-8898
    Remarks

    This open-access article is distributed under the terms of the Creative Commons Attribution Licence http://creativecommons.org/licenses/by/2.0/uk/legalcode, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

    URI
    http://hdl.handle.net/20.500.11937/22547
    Collection
    • Curtin Research Publications
    Abstract

    A new approach to the interpretation and analysis of coherent inelastic neutron scattering from polycrystals (poly-CINS) is presented. This article describes a simulation of the one-phonon coherent inelastic scattering from a lattice model of an arbitrary crystal system. The one-phonon component is characterized by sharp features, determined, for example, by boundaries of the (Q, ω) regions where one-phonon scattering is allowed. These features may be identified with the same features apparent in the measured total coherent inelastic cross section, the other components of which (multiphonon or multiple scattering) show no sharp features. The parameters of the model can then be relaxed to improve the fit between model and experiment. This method is of particular interest where no single crystals are available. To test the approach, the poly-CINS has been measured for polycrystalline aluminium using the MARI spectrometer (ISIS), because both lattice dynamical models and measured dispersion curves are available for this material. The models used include a simple Lennard-Jones model fitted to the elastic constants of this material plus a number of embedded atom method force fields. The agreement obtained suggests that the method demonstrated should be effective in developing models for other materials where single-crystal dispersion curves are not available.

    Related items

    Showing items related by title, author, creator and subject.

    • Creation, destruction, and transfer of atomic multipole moments by electron scattering: relativistic treatment 1
      Csanak, G.; Fontes, C.; Kilcrease, D.; Fursa, Dmitry (2011)
      We have obtained expressions for the creation, destruction, and transfer of atomic multipole moments by electron scattering under relativistic conditions. More specifically, we have obtained separate expressions for ...
    • Creation, destruction, and transfer of atomic multipole moments by electron scattering: relativistic treatment 1
      Csanak, G.; Fontes, C.; Kilcrease, D.; Fursa, Dmitry (2011)
      We have obtained expressions for the creation, destruction, and transfer of atomic multipole moments by electron scattering under relativistic conditions. More specifically, we have obtained separate expressions for ...
    • X-ray and neutron scattering of multiferroic LuFe2O4
      Lawrence, Shane Michael (2011)
      Multiferroic materials have recently begun to attract significant scientific interest due to their potential applications in the design of modern electronic devices. Currently, the magnetic properties of materials form ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.