Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Preservation of detrital shocked minerals derived from the 1.85 Ga Sudbury impact structure in modern alluvium and Holocene glacial deposits

    Access Status
    Fulltext not available
    Authors
    Thomson, O.
    Cavosie, Aaron
    Moser, D.
    Barker, I.
    Radovan, H.
    French, B.
    Date
    2014
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Thomson, O. and Cavosie, A. and Moser, D. and Barker, I. and Radovan, H. and French, B. 2014. Preservation of detrital shocked minerals derived from the 1.85 Ga Sudbury impact structure in modern alluvium and Holocene glacial deposits. Bulletin of the Geological Society of America. 126 (5-6): pp. 720-737.
    Source Title
    Bulletin of the Geological Society of America
    DOI
    10.1130/B30958.1
    ISSN
    0016-7606
    School
    Department of Applied Geology
    URI
    http://hdl.handle.net/20.500.11937/22600
    Collection
    • Curtin Research Publications
    Abstract

    Detrital shocked minerals can provide valua ble residual records of eroded impact structures. Recent studies have reported shocked minerals in modern alluvium in a subtropical climate from the deeply eroded 2.02 Ga Vredefort Dome impact basin in South Africa. To evaluate the detrital shocked mineral record at a large impact structure in a temperate setting with a Holocene glacial erosional history, we investigated  4000 detrital zircons and  20,000 quartz grains at the lesseroded 1.85 Ga Sudbury Basin in Ontario, Canada, for the presence of shocked sand grains. Modern alluvium from rivers within and outside the basin, and Holocene glaciofl uvial sands (eskers and outwash deltas ) across the basin were investigated for shocked minerals. Shocked zircon and/or quartz were found in all modern rivers and most Holocene glacial deposits within, but not outside, the basin. Petrography and scanning electron microscopy (SEM; back scattered electron [BSE]; cathodoluminescence [CL]) imaging and analysis (energy-dispersive X-ray spectroscopy [EDS], electron backscatter diffraction [EBSD]) were used to document shock microstructures. Of the total detrital zircons surveyed,  3% (118/3978) were identifi ed as shocked; Holocene samples contained higher average percentages of shocked zircon (63/1361, or 4.6%, with a high of 29%) compared to modern alluvium (55/2617, or 2.1%, with a high of 6%). EBSD analysis revealed a range of shock microstructures, including planar fractures, deformation microtwins, and crystal plastic deformation. At Sudbury, detrital shocked quartz is rare compared to zircon; only 15 grains ( 0.08%) were identifi ed, all with decorated planar deformation features (PDFs). These results demonstrate that a detrital shocked mineral record exists at a large impact basin that is in a "youthful" stage of erosion, despite its age. In addition to modern alluvium, our results also identify glaciofluvial eskers and deltas as reservoirs for detrital shocked minerals; glacial episodes thus enhance the dispersal and preservation of shocked detritus in sedimentary systems. Despite physical differences, the observation that the two largest Precambrian impact basins continue to contribute detrital shocked minerals 2 b.y. after impact suggests that a shocked mineral record of impacts on early Earth should reside in Precambrian siliciclastic rocks. ©2014 Geological Society of America.

    Related items

    Showing items related by title, author, creator and subject.

    • Fluvial transport of impact evidence from cratonic interior to passive margin: Vredefort-derived shocked zircon on the Atlantic coast of South Africa
      Montalvo, S.; Cavosie, Aaron; Erickson, T.; Talavera, C. (2017)
      Meteorite impacts produce shocked minerals in target rocks that record diagnostic high-pressure deformation microstructures unique to hypervelocity processes. When impact craters erode, detrital shocked minerals can be ...
    • The Rietputs Formation in South Africa: A Pleistocene Fluvial Archive of Meteorite Impact Unique to the Kaapvaal Craton
      Cavosie, Aaron; Erickson, T.; Montalvo, P.; Prado, D.; Cintron, N.; Gibbon, R. (2018)
      Reconstructing the terrestrial impact cratering record is a fundamental goal of planetary science. However, erosion, burial, and deformation can obscure or destroy impact records. A sedimentary record of impact is provided ...
    • Identification and provenance determination of distally transported, Vredefort-derived shocked minerals in the Vaal River, South Africa using SEM and SHRIMP-RG techniques
      Erickson, T.; Cavosie, Aaron; Moser, D.; Barker, I.; Radovan, H.; Wooden, J. (2013)
      The record of meteorite impacts on Earth is incomplete due to the destruction of impact craters by erosion and burial. Shocked minerals residing in sediments may help further document the impact record. To evaluate the ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.