Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    High-resolution 2D seismic imaging and forward modeling of a polymetallic sulfide deposit at Garpenberg, central Sweden

    Access Status
    Fulltext not available
    Authors
    Ahmadi, O.
    Juhlin, Christopher
    Malehmir, A.
    Munck, M.
    Date
    2013
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Ahmadi, O. and Juhlin, C. and Malehmir, A. and Munck, M. 2013. High-resolution 2D seismic imaging and forward modeling of a polymetallic sulfide deposit at Garpenberg, central Sweden. Geophysics. 78 (6): pp. B339-B350.
    Source Title
    Geophysics
    DOI
    10.1190/GEO2013-0098.1
    ISSN
    0016-8033
    School
    Department of Exploration Geophysics
    URI
    http://hdl.handle.net/20.500.11937/22601
    Collection
    • Curtin Research Publications
    Abstract

    We acquired a high-resolution 2D seismic profile to test the capability of the seismic method in imaging a sulfide ore body at Garpenberg, central Sweden. Delineation of the geologic structures, which surround and host the ore body, is another goal of the survey. Due to the 3D geology of the structures, a cross-dip correction performed to image out-of-the-plane reflections, resulting in a clear high amplitude anomaly at a time and location to that to be expected from near the top of the ore body. Furthermore, DMO processing and migration are applied to the data, providing images of four main reflection groups. The reflections have been interpreted as corresponding to geologic rock units in the area that partly interfere with the potential ore body signal. To further investigate the seismic response of the ore body, forward modeling by ray-tracing is applied using the ore body geometry as mapped by drilling. We use two ray-tracing approaches: standard 3D ray-tracing and an exploding reflector approach. Seven representative samples from the mine area are used to determine P-wave velocities. The measurements show a considerable contrast between the ore body and host rock. By comparing the modeled and observed data, we find that the high amplitude signal in the real seismic section most likely emanates from near the top of one concentrated ore which lies inside the larger mapped ore body that has been modeled as a resource. The base of the ore body is only observed on the synthetic data whereas a signal penetration analysis suggests that the seismic signal penetrated efficiently along the entire survey line. Presence of disseminated ore and lower fold toward the northern end of the profile could be combined reasons that make imaging the base of the ore body difficult.

    Related items

    Showing items related by title, author, creator and subject.

    • Feasibility of rock characterization for mineral exploration using seismic data
      Harrison, Christopher Bernard (2009)
      The use of seismic methods in hard rock environments in Western Australia for mineral exploration is a new and burgeoning technology. Traditionally, mineral exploration has relied upon potential field methods and surface ...
    • Application of vertical seismic profiling for the characterisation of hard rock
      Greenwood, Andrew John (2013)
      Seismic imaging in hard rock environments is gaining wider acceptance as a mineral exploration technique and as a mine-planning tool. However, the seismic images generated from hard rock targets are complex due to high ...
    • A New Crater Near InSight: Implications for Seismic Impact Detectability on Mars
      Daubar, I.J.; Lognonné, P.; Teanby, N.A.; Collins, G.S.; Clinton, J.; Stähler, S.; Spiga, A.; Karakostas, F.; Ceylan, S.; Malin, M.; McEwen, A.S.; Maguire, R.; Charalambous, C.; Onodera, K.; Lucas, A.; Rolland, L.; Vaubaillon, J.; Kawamura, T.; Böse, M.; Horleston, A.; van Driel, M.; Stevanović, J.; Miljkovic, Katarina ; Fernando, B.; Huang, Q.; Giardini, D.; Larmat, C.S.; Leng, K.; Rajšić, A.; Schmerr, N.; Wójcicka, N.; Pike, T.; Wookey, J.; Rodriguez, S.; Garcia, R.; Banks, M.E.; Margerin, L.; Posiolova, L.; Banerdt, B. (2020)
      A new 1.5 m diameter impact crater was discovered on Mars only ~40 km from the InSight lander. Context camera images constrained its formation between 21 February and 6 April 2019; follow-up High Resolution Imaging Science ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.