Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Greenalite precipitation linked to the deposition of banded iron formations downslope from a late Archean carbonate platform

    Access Status
    Fulltext not available
    Authors
    Rasmussen, Birger
    Muhling, Janet
    Suvorova, A.
    Krapež, B.
    Date
    2017
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Rasmussen, B. and Muhling, J. and Suvorova, A. and Krapež, B. 2017. Greenalite precipitation linked to the deposition of banded iron formations downslope from a late Archean carbonate platform. Precambrian Research. 290: pp. 49-62.
    Source Title
    Precambrian Research
    DOI
    10.1016/j.precamres.2016.12.005
    ISSN
    0301-9268
    School
    Department of Applied Geology
    Funding and Sponsorship
    http://purl.org/au-research/grants/arc/DP140100512
    URI
    http://hdl.handle.net/20.500.11937/22640
    Collection
    • Curtin Research Publications
    Abstract

    © 2016 Elsevier B.V.Banded iron formations (BIFs) were deposited as deep-water facies distal to the late Archean Campbellrand carbonate platform, Transvaal Supergroup, South Africa. They are traditionally interpreted to have formed from iron oxides/hydroxides and silica that precipitated when upwelling hydrothermal water enriched in Fe2+ and silica mixed with cooler, shallow seawater enriched in dissolved oxygen. The ferric oxides/hydroxides were then converted to hematite or, in the presence of organic matter, reduced and incorporated into siderite. New high-resolution microscopy of BIFs from distal facies of the Campbellrand platform questions that interpretation, revealing the presence of abundant greenalite nanoparticles, interpreted to represent primary precipitates from ferruginous seawater, consistent with recent results from equivalent-aged BIFs of the Hamersley Group, Western Australia. The particles locally define primary sedimentary lamination, and are engulfed in diagenetic chert that preserves shrinkage structures, considered to have formed during dehydration and recrystallization of amorphous silica cement. The replacement of greenalite nanoparticles by coarser grained oxide, silicate and carbonate minerals, with destruction of primary textures and structures, indicates that iron-silicate muds were originally much more widespread. Based on our findings we propose a new model for the deposition of the BIFs, involving iron silicate precipitation from seawater followed by diagenetic silica cementation on the seafloor. We suggest that ferrous iron and silica were transported in hydrothermal plumes sourced from acidic vent fluids. Upon mixing with cooler, more alkaline seawater, the solubility of ferrous iron and silica fell to levels that favored rapid nucleation and the precipitation of iron-silicate nanoparticles over vast areas of the seafloor. The close association between iron and silica during the deposition of BIFs may be explained by the precipitation of iron-silicate nanoparticles and possible sorption of silica onto the surfaces of sinking nanoparticles. Furthermore, on the seafloor, iron-silicate nanoparticles presumably acted as nucleation sites for dissolved silica, promoting early diagenetic silica precipitation and cementation of the iron-rich muds. Our results indicate that iron silicates were important primary precipitates and suggest that changes in alkalinity rather than redox state played a key role in the precipitation of the precursor sediments of BIFs.

    Related items

    Showing items related by title, author, creator and subject.

    • Precipitation of iron silicate nanoparticles in early Precambrian oceans marks Earth’s first iron age
      Rasmussen, Birger; Krapež, Bryan; Muhling, Janet; Suvorova, A. (2015)
      The early ocean was characterized by anoxic, iron-rich (ferruginous) conditions before the rise of atmospheric oxygen ~2.45 b.y. ago. A proxy for ferruginous conditions in the ancient ocean is the deposition of banded ...
    • Dust to dust: Evidence for the formation of “primary” hematite dust in banded iron formations via oxidation of iron silicate nanoparticles
      Rasmussen, Birger; Muhling, Janet; Suvorova, A.; Krapež, Bryan (2016)
      Conventional models for the deposition of banded iron formations (BIFs) envisage the oxidation of upwelled ferrous iron and the precipitation of ferric oxide/hydroxide particles in surface waters that settled to form ...
    • Co-precipitation of ferrihydrite and silica from acidic hydrometallurgical solutions and its impact on the paragoethite process
      Dyer, Laurence G (2010)
      Ferrihydrite is a common iron oxyhydroxide, produced both naturally and industrially. It is often found in association with silica; an example of this is its occurrence in the Paragoethite process applied in zinc ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.