An inverse railway wagon model and its applications
Access Status
Authors
Date
2007Type
Metadata
Show full item recordCitation
Source Title
ISSN
Faculty
Collection
Abstract
An inverse wagon model was developed to estimate wheel-rail contact forces using only measurements of wagon body responses as inputs. The purpose of this work was to provide mathematical modelling to embed in low-cost devices that can be mounted on each freight wagon in a large wagon fleet. To minimize cost, complication, and the maintenance inconvenience of these devices, the constraint is imposed that transducers and connections are limited to locations on the wagon body. Inputs to the inverse model developed include only vertical and lateral translational accelerations and angular accelerations of roll, pitch, and yaw of the wagon body. The model combines the integration and partial modal matrix (PMM) techniques together to form an IPMM method. Besides wheel-rail contact forces some motion quantities such as the lateral and yaw displacements of wheelset are also predicted. Results from the inverse model were compared with data from full scale laboratory suspension tests for vertical suspension excitations. The inverse model was also compared with results from simulations completed in VAMPIRE for more complicated track input profiles. The model results and the applications of the model are discussed.
Related items
Showing items related by title, author, creator and subject.
-
Xia, F.; Cole, C.; Wolfs, Peter (2008)A grey box-based inverse wagon model was developed to estimate wheel-rail contact forces using only measurements of wagon body responses as inputs. The project is based on a similar application using a deterministic inverse ...
-
Xia, F.; Cole, C.; Wolfs, Peter (2006)The Cooperate Research Centre for Railway Engineering and Technologies has a research project focused upon developing low cost vehicle ride quality detection systems. This paper presents the development of a device which ...
-
Wolfs, Peter; Bleakly, S.; Senini, S.; Thomas, P. (2006)In the case of a railway wagon running on track, irregularities in the track formation can lead to complex dynamic interactions. Experience has shown that track geometry alone is not a good predictor of vehicle response ...