Forecasting value-at-risk using maximum entropy density
Citation
Source Title
Source Conference
ISBN
School
Collection
Abstract
Despite its shortcoming, Value-at-Risk (VaR) remains as one of the most important measures of riskfor financial assets. Although it is used widely by regulatory authority in assessing risk of the financial markets, the robust construction of VaR forecasts remains a controversial issue. This paper proposes a new method to construct VaR forecasts based on Maximum Entropy Density, along with the Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model of Bollerslev (1986).Using the result in Ling and McAleer (2003), the Quasi-Maximum Likelihood Estimator (QMLE) with thenormal density for ARMA-GARCH model is consistent and asymptotically normal under mild assumptions. This implies that it is possible to obtain consistent estimates of the standardized residuals even when the underlying distribution of returns is non-normal. Given this, the distribution of the standardized residuals can then be approximated using Maximum Entropy Density (MED) which allows different characteristics of the distribution, such as excess kurtosis, to be accommodated. The one-day-ahead VaR forecasts can then be constructed by using the estimated ARMA-GARCH model and the MED. The practical usefulness of the proposed method is evaluated empirically against ARMA-GARCH and ARMAGJR models with different distributional assumptions using daily S&P 500 data. The empirical results show promising sign of the proposed method.
Related items
Showing items related by title, author, creator and subject.
-
Chan, Felix (2020)© MODSIM 2009.All rights reserved. Despite its shortcoming, Value-at-Risk (VaR) remains as one of the most important measures of risk for financial assets. Although it is used widely by regulatory authority in assessing ...
-
Gurrib, Muhammad Ikhlaas (2008)This study gives an insight into the behaviour and performance of large speculators and large hedgers in 29 US futures markets. Using a trading determinant model and priced risk factors such as net positions and sentiment ...
-
Chan, F.; Singh, Ranjodh (2013)The objective of this paper is to test for intra-daily seasonality using Maximum Entropy Density (MED). Specifically, this paper attempts to investigate seasonal patterns over weekdays and through the hours of a given ...