Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Stability of Chemically Passivated Silicon Electrodes in Aqueous Solutions: Interplay between Bias Voltage and Hydration of the Electrolyte

    242032_242032.pdf (1.419Mb)
    Access Status
    Open access
    Authors
    Gonçales, V.
    Wu, Y.
    Gupta, B.
    Parker, S.
    Yang, Y.
    Ciampi, Simone
    Tilley, R.
    Gooding, J.
    Date
    2016
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Gonçales, V. and Wu, Y. and Gupta, B. and Parker, S. and Yang, Y. and Ciampi, S. and Tilley, R. et al. 2016. Stability of Chemically Passivated Silicon Electrodes in Aqueous Solutions: Interplay between Bias Voltage and Hydration of the Electrolyte. Journal of Physical Chemistry C. 120 (29): pp. 15941-15948.
    Source Title
    Journal of Physical Chemistry C
    DOI
    10.1021/acs.jpcc.5b12454
    ISSN
    1932-7447
    School
    Nanochemistry Research Institute
    Remarks

    This research was supported under Australian Research Council's (ARC) Discovery Projects Funding Scheme (DP150103065) and by the ARC Centre of Excellence for Convergent Bio-Nano Science and Technology (CE140100036)

    This open access article is distributed under the Creative Commons license http://creativecommons.org/licenses/by-nc-nd/4.0/

    URI
    http://hdl.handle.net/20.500.11937/23206
    Collection
    • Curtin Research Publications
    Abstract

    Chemical passivation of nonoxide semiconductors is a key prerequisite for electrochemical devices that operate in water-based electrolytes. Silicon remains the technologically most important material and organic monolayers based on the hydrosilylation of 1-alkynes have been shown to be a very effective approach to limit the thermodynamically favorable oxidation of the electrode, while still retaining efficient electron transfer across the solid/liquid interface. A large excess of a supporting electrolyte is always added to the solution in order to confine the applied potential gradient to the region close to the surface of the electrode. However, little is known about how the degree of solvation of the electrolyte species is linked to the degradation of the passivating chemistry. Here we test experimentally how electrolytes with different intrinsic hydration levels can influence the protection of the silicon as a function of surface biasing. X-ray photoelectron spectroscopy and contact angle experiments are used to determine under which conditions the chemical protection breaks down and oxidation of the silicon begins. Our results suggest that (i) anions seem to have a bigger impact on the growth of oxide than cations and (ii) the surface chemistry is more effective for protecting the semiconductor surface against oxidation in the presence of weakly hydrated ions. The utilization of strongly hydrated ions as the electrolyte dramatically diminishes the potential range in which the organic monolayer protects the silicon in aqueous environments.

    Related items

    Showing items related by title, author, creator and subject.

    • Tetrahydrofuran and natural gas hydrates formation in the presence of various inhibitors
      Rojas González, Yenny V. (2011)
      The aim of this thesis is to investigate the formation process of tetrahydrofuran (THF) hydrates and natural gas hydrates, and the effect of kinetic hydrate inhibitors (KHIs) on the formation and growth of these hydrates. ...
    • Wet chemical routes to the assembly of organic monolayers on silicon surfaces via the formation of Si-C bonds: Surface preparation, passivation and functionalization
      Ciampi, Simone; Harper, J.; Gooding, J. (2010)
      Organic functionalization of non-oxidized silicon surfaces, while allowing for robust chemical passivation of the inorganic substrate, is intended and expected to broaden the chemical, physical and electronic properties ...
    • Light-activated electrochemistry on alkyne-terminated Si(100) surfaces towards solution-based redox probes
      Wu, Y.; Kashi, M.; Yang, Y.; Gonçales, V.; Ciampi, Simone; Tilley, R.; Gooding, J. (2016)
      Light-activated electrochemistry is a powerful concept, where faradaic electrochemistry at a monolayer protected monolithic silicon electrode can be ‘turned on’ at any location with micron scale resolution simply by ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.