Effect of size polydispersity on micromechanical properties of static granular materials
Access Status
Authors
Date
2013Type
Metadata
Show full item recordCitation
Source Title
ISBN
School
Collection
Abstract
We analytically investigate the influence of particle size polydispersity on the micromechanical properties of granular packings. In order to approximate the macroscopic quantities in terms of the microscale details, we develop a meanfield approach. It is shown that the trace of the fabric and stress tensors, and the elements of the stiffness tensor can be expressed in terms of dimensionless correction factors (which depend only on the moments of the size distribution), besides the average packing properties such as packing fraction, mean coordination number, and mean normal force. The results of numerical simulations confirm the validity of our analytical predictions, as long as the size distribution is not too wide. © 2013 AIP Publishing LLC.
Related items
Showing items related by title, author, creator and subject.
-
Pratapa, Suminar (2003)Crystallite (or grain) size and strain within a polycrystalline material may have a profound influence on its physical properties, eg. the fracture toughness, wear and thermal shock resistance. A diffraction pattern for ...
-
Darbor, M.; Faramarzi, L.; Sharifzadeh, Mostafa ; Rezaei, H. (2017)Summary: In rock engineering, the effect of scale on the strength and deformation properties of the rock mass is one of the most important issues. Prediction of uniaxial compressive strength in different diameters using ...
-
El-ahmir, S.; Lim, S.L.; Lamont, Byron; He, Tianhua (2015)Seed size is a key functional trait that affects plant fitness at the seedling stage and may vary greatly with species fruit size, growth form and fecundity. Using structural equation modelling (SEM) and correlated trait ...