Show simple item record

dc.contributor.authorBineli Betsi, T.
dc.contributor.authorLentz, D.
dc.contributor.authorMcInnes, Brent
dc.contributor.authorEvans, Noreen
dc.date.accessioned2017-01-30T12:36:17Z
dc.date.available2017-01-30T12:36:17Z
dc.date.created2013-03-20T08:52:23Z
dc.date.issued2012
dc.identifier.citationBineli Betsi, Thierry and Lentz, David and McInnes, Brent and Evans, Noreen J. 2012. Emplacement ages and exhumation rates for intrusion-hosted Cu–Mo–Sb–Au mineral systems at Freegold Mountain (Yukon, Canada): Assessment from U–Pb, Ar–Ar, and (U–Th)/He geochronometers. Canadian Journal of Earth Sciences. 49 (5): pp. 653-670.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/23242
dc.identifier.doi10.1139/E2012-009
dc.description.abstract

To decipher the thermal history of mineralized systems across the Freegold Mountain area (Yukon, Canada), a combined geochronology (zircon U–Pb and hornblende, biotite, and whole rock Ar–Ar) and thermochronology (apatite and zircon (U–Th)/He) study was carried out. Previous U–Pb data combined with new U–Pb and Ar–Ar data show that intrusive bodies across the Freegold Mountain were emplaced during two protracted episodes, the first spanning from 109.6 to 98 Ma and the second between 79 and 68 Ma. Overprinting of the first intrusive event by a second magmatic hydrothermal event is suggested by a zircon U–Pb age of 108.7 ± 0.4 Ma for a chlorite-altered dyke and a whole rock Ar–Ar plateau age of 76.25 ± 0.53 Ma. Zircon (U–Th)/He data are between 66 and 89 Ma, whereas apatite (U–Th)/He data are scattered (38.7–109.9 Ma) and bracket the two magmatic emplacement events.Our combined data reveal a complex history of reheating that led to resetting of numerous chronometers. In most of the investigated magmatic hydrothermal systems, early fast cooling from igneous emplacement through hydrothermal alteration (between 900 and 200 °C) was followed by later and slower cooling accompanying post mineralization uplift and erosion (between 200 and 70 °C). Preliminary models indicate intrusive bodies associated with the Stoddart Cu–Mo ± W prospect cooled slowly (23 °C/Ma) compared with the ones spatially associated with the Revenue Au–Cu prospect (43 °C/Ma), and the similarity of the zircon U–Pb and (U–Th)/He ages from Revenue dyke further supports a rapid cooling from 700 to 180 °C. Erosion rates of 0.035–0.045 mm/year are consistent with tectonic quiescence during the Late Tertiary combined with the lack of Pleistocene glaciation in central Yukon. Such low rates of exhumation favour the formation and preservation of supergene mineralization, such as that found north of Freegold Mountain.

dc.publisherNational Research Council Canada
dc.subjectFreegold Mountain
dc.subjectCu-Mo-Sb-Au mineral system
dc.subjectemplaement ages
dc.subjectintrusion-osted
dc.subjectexhumation rates
dc.titleEmplacement ages and exhumation rates for intrusion-hosted Cu–Mo–Sb–Au mineral systems at Freegold Mountain (Yukon, Canada): Assessment from U–Pb, Ar–Ar, and (U–Th)/He geochronometers
dc.typeJournal Article
dcterms.source.volume49
dcterms.source.startPage653
dcterms.source.endPage670
dcterms.source.issn00084077
dcterms.source.titleCanadian Journal of Earth Sciences
curtin.department
curtin.accessStatusFulltext not available


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record