Cyclization enhances function of linear anti-arthritic peptides
Access Status
Authors
Date
2014Type
Metadata
Show full item recordCitation
Source Title
ISSN
Collection
Abstract
This study describes the biophysical and immunomodulatory features of a cyclic peptide termed C1 which consists of alternating d-, l-amino acids and is capable of inhibiting IL-2 production in vitro and reducing the induction and extent of T-cell mediated inflammation in animal models. Solid-state nuclear magnetic resonance demonstrates that the peptide orders the lipid bilayer, suggesting a transmembrane orientation, and this is supported by surface plasmon resonance indicating strong binding affinity of C1 to model membranes. In vitro cell viability and proliferation assays show that C1 does not disrupt the integrity of cell surface membranes. Permeation studies of C1 and analogs across human epidermis cells show that the stability and skin permeability are enhanced by cyclization. Treatment with C1 in an asthma and in an arthritis animal model resulted in a suppressed immune response. Cyclization may be a useful means of enhancing biological linear peptide activity and improving delivery.
Related items
Showing items related by title, author, creator and subject.
-
Lazoura, E.; Lodding, J.; Farrugia, W.; Day, S.; Ramsland, Paul; Apostolopoulos, V. (2009)The major histocompatibility complex (MHC) on the surface of antigen presenting cells functions to display peptides to the T cell receptor (TCR). Recognition of peptide-MHC by T cells initiates a cascade of signals, which ...
-
Namjoshi, Sarika M (2009)Recent developments in genetic engineering and biotechnology have resulted in anincrease in availability of therapeutic peptides and small anti-cytokines. Oraladministration is inappropriate as these molecules are unstable ...
-
Katsara, M.; Yuriev, E.; Ramsland, Paul; Tselios, T.; Deraos, G.; Lourbopoulos, A.; Grigoriadis, N.; Matsoukas, J.; Apostolopoulos, V. (2009)Mutations of peptides to generate altered peptide ligands, capable of switching immune responses from T helper 1 (Th1) to T helper 2 (Th2), are promising candidates for the immunotherapy of autoimmune diseases such as ...