Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Very low thermal conductivity in lanthanum phosphate-zirconia ceramic nanocomposites processed using a precipitation-peptization synthetic approach

    246721.pdf (1.159Mb)
    Access Status
    Open access
    Authors
    Shijina, K.
    Sankar, S.
    Midhun, M.
    Firozkhan, M.
    Nair, Balagopal
    Warrier, K.
    Hareesh, U.
    Date
    2016
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Shijina, K. and Sankar, S. and Midhun, M. and Firozkhan, M. and Nair, B. and Warrier, K. and Hareesh, U. 2016. Very low thermal conductivity in lanthanum phosphate-zirconia ceramic nanocomposites processed using a precipitation-peptization synthetic approach. New Journal of Chemistry. 40 (6): pp. 5333-5337.
    Source Title
    New Journal of Chemistry
    DOI
    10.1039/c5nj03290c
    ISSN
    1144-0546
    School
    Nanochemistry Research Institute
    URI
    http://hdl.handle.net/20.500.11937/23347
    Collection
    • Curtin Research Publications
    Abstract

    A wet chemical synthetic approach involving precipitation-peptization mechanisms was successfully adopted for the development of LaPO4-ZrO2 nanocomposites with the ZrO2 content varying in the 5-20 wt% range. Stoichiometric lanthanum phosphate, formed as nanofibrils during the precipitation reaction with orthophosphoric acid, was subsequently transformed into nanorods of ~10 nm width and <100 nm length upon peptization at pH 2. Zirconia dispersions were homogeneously incorporated as ultrafine particulates through zirconium oxychloride hydrolysis using ammonia. The nanocomposite precursor thus obtained could be densified to >98% TD for the LaPO4-10 wt% ZrO2 composition upon sintering at 1600 °C. The addition of ZrO2 to LaPO4 impeded densification and grain growth inhibition of up to 50% was obtained for LaPO4-20 wt% ZrO2 nanocomposites. Furthermore, the nanocomposites indicated very low thermal conductivity values (1 W m-1 K-1) compared to single phase LaPO4. The non-reactivity of LaPO4 and ZrO2 at high temperatures and the low thermal conductivity values of LaPO4-ZrO2 render them effective for high temperature thermal insulation applications. © 2016 The Royal Society of Chemistry and the Centre National de la Recherche Scientifique.

    Related items

    Showing items related by title, author, creator and subject.

    • Microstructural design and properties of high performance recycled cellulose fibre reinforced polymer eco-nanocomposites
      Alamri, Hatem Rashed (2012)
      In recent years, cellulose fibre-reinforced polymer composites have been gaining a great attention in several engineering applications due to their desirable properties, which include low density, low cost, renewability ...
    • Synthesis of PMMA/modified graphene oxide nanocomposite pour point depressant and its effect on the flow properties of Indian waxy crude oil
      Sharma, R.; Mahto, V.; Vuthaluru, Hari (2019)
      Application of Polymeric nanocomposites as pour point depressant (PPD) for crude oil has opened the doors for a new area of research in the petroleum industry. In this research work, a polymer nanocomposite Poly(methyl ...
    • Characteristics of nanoclay and calcined nanoclay cement nano composite
      Hakamy, Ahmad Magbul M; Shaikh, Faiz; Low, It Meng (2015)
      The influence of nanoclay (NC) and calcined nanoclay (CNC) on the mechanical and thermal properties of cement nano-composites presented. Calcined nanoclay is prepared by heating nanoclay (Cloisite 30B) at 900 C for 2 ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.