An Artificial Bee Colony algorithm with guide of global & local optima and asynchronous scaling factors for numerical optimization
Access Status
Authors
Date
2015Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
Artificial Bee Colony (ABC) algorithm is a wildly used optimization algorithm. However, ABC is excellent in exploration but poor in exploitation. To improve the convergence performance of ABC and establish a better searching mechanism for the global optimum, an improved ABC algorithm is proposed in this paper. Firstly, the proposed algorithm integrates the information of previous best solution into the search equation for employed bees and global best solution into the update equation for onlooker bees to improve the exploitation. Secondly, for a better balance between the exploration and exploitation of search, an S-type adaptive scaling factors are introduced in employed bees’ search equation. Furthermore, the searching policy of scout bees is modified. The scout bees need update food source in each cycle in order to increase diversity and stochasticity of the bees and mitigate stagnation problem. Finally, the improved algorithms is compared with other two improved ABCs and three recent algorithms on a set of classical benchmark functions. The experimental results show that our proposed algorithm is effective and robust and outperform the other algorithms.
Related items
Showing items related by title, author, creator and subject.
-
Zhu, Dengya (2010)Web search results are far from perfect due to the polysemous and synonymous characteristics of nature languages, information overload as the results of information explosion on the Web, and the flat list, “one size fits ...
-
Zhu, Dengya (2007)With the exponential growth of the Web and the inherent polysemy and synonymy problems of the natural languages, search engines are facing many challenges such as information overload, mismatch of search results, missing ...
-
Goh, Kwang Leng (2013)Web spamming has tremendously subverted the ranking mechanism of information retrieval in Web search engines. It manipulates data source maliciously either by contents or links with the intention of contributing negative ...