Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Photoeletrocatalytic activity of a Cu 2O-loaded self-organized highly oriented TiO 2 nanotube array electrode for 4-chlorophenol degradation

    Access Status
    Fulltext not available
    Authors
    Hou, Y.
    Li, Xin Yong
    Zou, X.
    Quan, X.
    Chen, G.
    Date
    2009
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Hou, Y. and Li, X.Y. and Zou, X. and Quan, X. and Chen, G. 2009. Photoeletrocatalytic activity of a Cu 2O-loaded self-organized highly oriented TiO 2 nanotube array electrode for 4-chlorophenol degradation. Environmental Science and Technology. 43 (3): pp. 858-863.
    Source Title
    Environmental Science and Technology
    DOI
    10.1021/es802420u
    ISSN
    0013-936X
    School
    Department of Chemical Engineering
    URI
    http://hdl.handle.net/20.500.11937/23722
    Collection
    • Curtin Research Publications
    Abstract

    Differently sized Cu 2O nanoparticles have been assembled photocatalytically on the surface of self-organized highly oriented TiO 2 nanotubes obtained by anodization of a Ti sheet in fluoride- containing electrolytes. X-ray diffraction analysis identifies an anatase structure and fine preferential orientation of (101) planes. The UV-vis absorption edge of the TiO 2 nanotube arrays shift to lower energy after Cu 2O loading. The composite array electrode exhibits a higher photovoltage response than the TiO 2 powders directly deposited on a Ti sheet. The highest photoconversion efficiencies observed for the Cu 2O-loaded electrode are 17.2% and 0.82% under UV light and visible light irradiation, respectively. Especially, the composite array electrode shows a higher efficiency than the nonloaded one for the photoelectrocatalytic decomposition of 4-chlorophenol. The improved photoeletrocatalytic activity of the TiO 2/Cu 2O composite array electrode is attributed to the synergistic effect of Cu 2O nanoparticles and TiO 2 nanotube arrays. The Cu 2O nanoparticles could enhance the efficiency of photon harvesting and reduce the chances of electron-hole recombination by sending the electrons to the conduction band of TiO 2 nanotubes. The accumulated electrons in the conduction band of TiO 2 nanotubes would reduce oxygen to form peroxides for enhanced advanced oxidation. The byproducts were identified by high- performance liquid chromatography. © 2009 American Chemical Society.

    Related items

    Showing items related by title, author, creator and subject.

    • Electrochemical method for synthesis of a ZnFe 2O 4/TiO 2 composite nanotube array modified electrode with enhanced photoelectrochemical activity
      Hou, Y.; Li, Xin Yong; Zhao, Q.; Quan, X.; Chen, G. (2010)
      An electrode with intimate and well-aligned ZnFe 2O 4/TiO 2 composite nanotube arrays is prepared via electrochemical anodization of pure titanium foil in fluorine-containing ethylene glycol, followed by a novel cathodic ...
    • Fabrication and photo-electrocatalytic properties of highly oriented titania nanotube arrays with {1 0 1} crystal face
      Hou, Y.; Li, Xin Yong; Liu, P.; Zou, X.; Chen, G.; Yue, P. (2009)
      Highly oriented titania nanotube (TN) arrays with {1 0 1} crystal face were prepared on the surface of titanium substrate by liquid chemical deposition method. The obtained titania samples were characterized by X-ray ...
    • Preparation and characterization of Fe-Ni/TiO2 nanotube array electrodes and their photoeletrocatalytic activity for dechlorination of pentachlorophenol
      Tan, J.; Li, Xin Yong; Moses, T.; Liu, Shaomin (2012)
      The Fe-Ni/TiO2 nanotube array electrodes with different metal loadings were fabricated by the anodic oxidation method, followed by a dipping and electro-deposition technique. Scanning electron microscopy(SEM), X-ray ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.