Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Theses
    • View Item
    • espace Home
    • espace
    • Curtin Theses
    • View Item

    Experimental and PFC2D numerical study of progressive shear behaviour of single rough rock fractures

    159521_Asadi full.pdf (12.23Mb)
    Access Status
    Open access
    Authors
    Asadi, Mohammad Sadegh
    Date
    2011
    Supervisor
    Dr. Vamegh Rasouli
    Type
    Thesis
    Award
    PhD
    
    Metadata
    Show full item record
    School
    School of Science and Engineering, Department of Petroleum Engineering
    URI
    http://hdl.handle.net/20.500.11937/2375
    Collection
    • Curtin Theses
    Abstract

    This thesis investigates the progressive shear behaviour and asperity degradation of single rough rock fractures using 2D numerical simulations and laboratory experiments.The particle flow code (PFC) was chosen for simulation purposes in this work. The fracture and intact sample are modelled as an assembly of circular disks in PFC2D. By performing biaxial test simulations in PFC2D, correlations were obtained between micro and macro properties of the intact sample. These results were used later for guidance to establish the micro properties of models corresponding to mortar samples, based on the macro response obtained from the lab experiments. To define a set of micro properties corresponding to fracture particles and investigate their effects on shear behaviour of both planar and rough fractures, a sensitivity analysis of fracture model micro properties including particle size, particle friction coefficient, and contact bond strength were carried out.Several synthetic profiles with triangular and sinusoidal geometries were simulated to study their shear behaviour. A prior knowledge of the shearing response of such simple geometries allowed calibration of the model to be made. The results confirmed the observation of different failure modes, i.e. sliding, asperity cut-off, and degradation, as a result of increasing the normal stress. The simulation results were compared with lab experiments that were carried out on synthetic samples with constant height elevations along their thickness. This was the closest geometry that could be used to calibrate 2D models, and a good agreement was found between the results of the two approaches.The lab shear tests were conducted using a fracture shear cell (FSC). This was a special set up made from modifications on an existing triaxial stress cell. The FSC was capable of applying large shear and normal loads to the sample where the normal load was applied in a constant rate using a pressure cylinder.Both lab experiments and simulations were performed on pseudo-real as well as rock-like fracture specimens. The directionality in shear strength when the sample was sheared in opposite directions along a horizontal plane was also studied. The 1D Riemannian dispersion parameter (DR1) was determined for different profiles’ geometries as a measure of roughness. This parameter showed a good correlation with the profile’s shear strength. The spline fits to the peak shear strength data for triangular profile geometry as well as the number of rock fracture profiles obtained from literature were developed and presented. A detailed discussion on the simulations and lab experiments will be given and the results presented and interpreted.

    Related items

    Showing items related by title, author, creator and subject.

    • Numerical simulations of fluid flow through a single rough walled fracture
      Hosseinian, Armin (2011)
      The morphological properties of rock fractures may have a significant influence on their hydromechanical behaviour. Fracture surface roughness could change the fluid flow regime from laminar to turbulent, while it causes ...
    • A bonded particle model simulation of shear strength and asperity degradation for rough rock fractures
      Asadi, Mohammad Sadegh; Rasouli, Vamegh; Barla, G. (2012)
      Different failure modes during fracture shearing have been introduced including normal dilation or sliding, asperity cut-off and degradation. Attempts have been made to study these mechanisms using analytical, experimental ...
    • Physical simulation of asperity degradation using laboratorial shear tests of artificial fractures
      Asadi, Mohammad Sadegh; Rasouli, Vamegh (2012)
      Hydromechanical behaviour of sheared rock fractures is complex as it highly depends on the evolution of surface roughness after the degradation of asperities. A new fracture shear cell (FSC) which is able to conduct tests ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.